Supporting Information for

Organocatalytic Cycloaddition of Carbonyl Sulfide with

Propargylic Alcohols to 1,3-Oxithiolan-2-ones

Hui Zhou*, Rui Zhang, Hui Zhang, Sen Mu and Xiao-Bing Lu*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

E-mail: zhouhui@dlut.edu.cn; xblu@dlut.edu.cn

Table of Contents

1.	Spectral data of NHC-COS and NHO-COS adducts 1a-1e	S2
2.	Synthesis of ¹³ C labeled THPE-COS adducts 1g	S3
3.	¹³ C-NMR and HRMS data for preliminary mechanistic studies	S4
4.	TGA of LB-COS adducts	S5
5.	NMR spectra	.S9

1. Spectral data of NHC-COS and NHO-COS adducts 1a-1e.

1a: ¹**H NMR** (500 MHz, CDCl₃) δ 7.43 (t, J = 7.8 Hz, 2H), 7.24 (d, J = 7.8 Hz, 4H), 7.04 (s, 2H), 2.80 – 2.65 (m,4H), 1.35 (d, J = 6.7 Hz, 12H), 1.15 (d, J = 7.0 Hz, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ 187.7, 147.2, 146.0, 131.17, 130.7, 124.4, 121.0, 29.2, 25.5, 22.9.

S^{*} O
1b: ¹H NMR (500 MHz, CD₂Cl₂) δ 7.04 (s, 2H), 7.02 (s, 4H), 2.34 (s, 6H), 2.23 (s, 12H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 189.5, 146.5, 141.3, 135.9, 135.8, 131.4, 129.7, 129.7, 120.5, 100.4, 21.3, 18.1.

 $\searrow N \longrightarrow N^{\oplus}$

S[^] O
1c: ¹H NMR (400 MHz, CD₃CN) δ 7.26 (s, 2H), 4.89 (hept, J = 6.7 Hz, 2H), 1.45 (d, J = 6.7 Hz, 12H). ¹³C NMR (100 MHz, CD₃CN) δ 192.6, 146.0, 116.7, 51.7, 22.6.

^S ■ 1d: ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.9 Hz, 2H), 5.24 (m, J = 13.3, 6.7 Hz, 1H), 3.75 (s, 2H), 2.17 (m, J = 13.5, 6.8 Hz, 2H), 1.91 – 1.80 (m, 1H), 1.74 (d, J = 6.7 Hz, 6H), 1.19 (d, J = 6.9 Hz, 6H), 1.15 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 146.2, 144.5, 131.8, 129.4, 124.9, 123.2, 118.4, 67.9, 52.0, 45.2, 28.5, 25.2, 23.2, 22.7.

^S_{\ominus} 1e: ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 2H), 4.91 (hept, J = 6.7 Hz, 1H), 4.37 (s, 1H), 1.55 (d, J = 6.7 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 141.9, 117.8, 50.7, 45.3, 22.7.

2. Synthesis of ¹³C labeled THPE-COS adducts 1g

Scheme S1. Synthetic routes of ¹³C labeled THPE-COS adducts

In a glove box, a 10 ml autoclave containing a stirring bar was charged with elemental sulfur (64 mg, 2.0 mmol), DBN-salt (0.5 mmol), NaH (48 mg, 2.0 mmol) and THF (2.0 mL), then was pressurized to 0.5 MPa with ¹³CO . The reaction was carried out at 60 °C for 48 hours with continuous stirring. Then, the autoclave was cooled, and the excess CO was vented. The residue was purified by column chromatography (CH₂Cl₂:MeOH=15:1) to give ¹³C labeled **1g** (50 mg, 36 % yield).

Figure S1. Comparison of HRMS spectra of normal and ¹³C labeled 1g

Figure S2. Comparison of ¹³C NMR spectra of normal and ¹³C labeled 1g

3. ¹³C-NMR and HRMS data for preliminary mechanistic studies

Figure S3. ¹³C NMR spectra of control experiments in Scheme 4.

Figure S4. Enlarged HRMS spectra of control experiments in Scheme 4.

From the ¹³C-NMR and HRMS data (Figure S3 and Figure S4), we could draw a conclusion that the COS moiety of product should entirely come from activated COS of THPE-COS adducts, and the reaction tends to proceed via the THPE-COS adducts mediated nucleophilic addition mechanism (Scheme3, Pathway A).

4. TGA of LB-COS Adducts (1a-1g).

The thermal stability of all reported LB-COS adducts (NHC-COS, NHO-COS, and THPE-COS adducts) in this manuscript were investigated by thermogravimetric analysis (TGA), and the thermogravimetric analysis data were shown below. Clean loss of 13.4%, 16.4% and 21.8% of the weight of adducts **1a**, **1b** and **1g** (corresponding to the mass of COS) was observed under high temperature, respectively (Figure S5, S6, and S11). In contrast, other LB-COS adducts (**1c-1f**) have almost identical dethiocarboxylation/decomposition temperature. During the

investigation, we found that part of LB-COS adducts obviously dethiocarboxylated under high temperature and reversibly released LB and free COS, so LB–COS adducts and free LB should have a certain catalytic activity to promote this process.

Figure S6. TGA of LB-COS adduct 1b

Figure S11. TGA of LB-COS adduct 1g

5. NMR spectra

-S13-

-S15-

-S25-

-S31-