**Supporting Information** 

## Improved visible-light photoactivities of porous LaFeO<sub>3</sub> by coupling with nanosized alkaline earth metal oxides and its mechanism insight

Iltaf Khan, Ning Sun, Ziqing Zhang, Zhijun Li, Muhammad Humayun, Sharafat Ali, Yang Qu\* and Liqiang Jing\*

Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University, Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China



**Figure S1** XRD patterns (A), UV-vis diffuse reflectance spectra (B), N<sub>2</sub> adsorptiondesorption isotherms (C), SS-SPS (D), Photocatalytic activities for 2,4-DCP degradation (E) and CO<sub>2</sub> conversion (F) of LFO and PLFO.



Figure S2 UV-vis diffuse reflectance spectra (A) and XPS of different elements in PLFO and 5SrO-PLFO.



Figure S3 TEM (A) and HRTEM (B) images of PLFO.



**Figure S4** Visible-light photoactivities for 2,4-DCP degradation of PLFO and XSrO-PLFO (A) and 5MO-PLFO (B). (M: Mg, Ca, Sr and Ba).



Figure S5 XRD patterns (A) and UV-vis diffuse reflectance spectra (B) of PLFO and 5MO-PLFO (M: Mg, Ca, Sr and Ba).



**Figure S6** N<sub>2</sub> adsorption-desorption isotherms (A) and pore diameters (B) of PLFO and 5MO-PLFO (M: Mg, Ca, Sr and Ba).



Figure S7 SPS responses (A) and FS spectra related produced •OH radicals (B) of PLFO and 5MO-PLFO (M: Mg, Ca, Sr and Ba).



Figure S8 O<sub>2</sub>-TPD (A) and electrochemical reduction (EC) curves in N<sub>2</sub>-bubbled systems (B) of PLFO and 5MO-PLFO (M: Mg, Ca, Sr and Ba).



**Figure S9** Scavenger experiments related the main active species of 5SrO-PLFO for the degradation of 2,4-DCP under visible-light irradiation.



Figure S10 Photocurrent action spectra of PLFO and 5SrO-PLFO samples.



**Figure S11** The crystal structure (A) and band diagram of SrO (B). The calculations were performed within the framework of density functional theory (DFT) framework embedded in the CASTEP code. The exchange-correlation energy is treated with generalized gradient approximation (GGA), using spin-polarized Perdew-Burke-Ernzerhof (PBE) functional.



**Figure S12** FS spectra related produced •OH radicals (A) and visible-light activities (B) of 5SrO-PLFO, 5SnO<sub>2</sub>-PLFO, 5TiO<sub>2</sub>-PLFO and PLFO.