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1. Computational Details

The calculations were carried out using density functional theory (DFT) with the Perdew-Burke-Ernzerbof
(PBE) form of generalized gradient approximation functional (GGA).! The Vienna ab-initio simulation
package (VASP) was employed.? The plane wave energy cutoff was set as 400 eV. The Fermi scheme was
employed for electron occupancy with an energy smearing of 0.1 eV. The first Brillouin zone was sampled in
the Monkhorst—Pack grid.® The 3x3x1 k-point mesh for the surface calculation. The energy (converged to 1.0
%10 eV/atom) and force (converged to 0.01eV/A) were set as the convergence criterion for geometry
optimization. The spin polarization was considered in all calculation. To accurately describe the van der Waals
(vdW) interaction involved in graphene, the semiempirical DFT-D2 force-field approach was employed in this
study.”

The (110) surface of MnO, is obtained by cutting the MnO, bulk along {110} directions. In the structural
optimization calculation for MnO,(110), the atoms of the bottom layer are fixed, while the positions of the
other atoms were allowed to relax. However, for graphene, all the atoms were allowed to relax. A vacuum

layer as large as 15 A was used along the C direction normal to the surfaces to avoid periodic interactions.

2. Additional Figures
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Figure S1. Morphology characterization: SEM image of MnO,-GOS-TiO..
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Figure S2. Structural characterization, XRD pattern of MnO,, MnO,-TiO,, MnO,-GOS and MnO,-GOS-
TiO,.
The diffraction peaks located at 13 © could be assigned to the (110) characteristic diffraction of the MnQO,.
The surface spacing of this crystal plane was consistent with that measured by HRTEM image in Figure 2d.
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Figure S3. The temperature-programmed oxidation (TPO) of GO in reaction atmosphere.
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Figure S4. Catalyst performance: (a) NH; conversion, (b) N,O selectivity and (c) N; selectivity of MnO,,
MnO,-TiO,, MnO,-GOS and MnO,-GOS-TiO, (content of TiO, in MnO,-TiO, was 0.2 %, content of C in
MnO,-GOS was 2 %, TiO, and C content of MnO,-GOS-TiO, were the same as the first two) in the presence

of steam.
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Figure S5. Relationship between catalyst performance and content of GO in MnO,-GOS.
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Figure S6. Relationship between catalyst performance and content of TiO, in MnO,-GOS-TiO..
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Figure S7. Catalyst performance:(a) NO conversion, (b) NH; conversion and (¢) N,O selectivity of newly

prepared and used MnO,-GOS-TiO, catalyst in the presence of steam.

Table S1. Rates and turnover frequencies of NH;-SCR?



Rate of reaction (107 mol g ') TOFe (103 s1)
Catalyst (D)® Overall  Complete reduction (N,) Partial reduction (N,O) | Overall Complete reduction (N,)
MnO, (1.52) 5.6 52 0.4 3.2 3.0
MnO,-TiO, (0.37) 5.1 4.8 0.3 12 11.3
MnO,-GOS (0.69) 5.6 52 0.4 7.1 6.6
MnO,-GOS-MnO; (0.58) 5.5 53 0.2 8.2 7.9

2500 ppm NO reacted after 10 mins at 150 °C in the presence of the steam and SO,.
b Dispersion values in percent were given in parentheses.

¢ Turnover frequencies with respect to the surface atoms.
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Figure S8. XPS spectra for (a) Mn 2ps), and (b) O 2ps, for MnO,, MnO,-TiO,, MnO,-GOS and MnO,-
GOS-TiO,.
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. DRIFT study on mechanism of NH;-SCR
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Figure S9. DRIFT study on NH;-SCR mechanism of MnO,, MnO,-TiO, and MnO2-GOS-TiO..
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