Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019 ## **Electronic supplementary information** ## Gas-Phase Synthesis of Morphology-Controlled Pt Nanoparticles and Their Impact on Cinnamaldehyde Hydrogenation Sosuke Kato,^a Junya Ohyama,^{b,c*} Masato Machida,^{b,c} and Atsushi Satsuma^{a,c*} ^aDepartment of Materials Chemistry, Graduate school of Engineering, Nagoya University, Nagoya, 464-8603, Japan ^bFaculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan ^cElements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto, 615-8245, Japan **Figure S1.** TEM images of Pt/C-CO catalysts. **Figure S2**. Temperature-programmed reduction (TPR) profiles of Pt/C under (a) CO, (b) CO/H₂, and (c) H₂ flow. The TPR was carried out using a BEL-CAT-B instrument. Approximately 30 mg was placed in a sample tube. After the samples were pretreated at 50 °C in He, CO/H₂-TPR measurement was performed under a flow of mixed 5% CO/He and 1% H₂/Ar at rates of 5 and 50 mL/min; CO-TPR was performed under a flow of 5% CO/He, and H₂-TPR was performed under a 1% H₂/Ar flow at a rate of 40 mL/min. The sample temperature was ramped from 50 °C to 500 °C at 5 °C/min. The CO/H₂-TPR (b) and H₂-TPR profiles (c) show peaks due to Pt precursor reduction below 200 °C. However, CO-TPR (a) showed no peaks from 50 °C to 500 °C. The results indicate that CO acts as a protective rather than a reducing agent. **Fig. S3** In situ IR spectrum of C-H vibration region of 10wt% Pt/SiO₂-CO after treatment under 2.7% CO/33% H₂/Ar flow at 200 °C for 1 h. There was no significant peak due to C-H vibration; however, CO vibration was clearly observed as shown in Fig. 4. The result suggests that CO mainly contribute the structural variation of Pt nanoparticles. **Table S1**. Pt particle size and CAL hydrogenation results^a for Pt/C catalysts. | Catalyst | Particle size (nm) | | XRD crystallite | Reaction time | Conversion | Reaction Rate | Selectivity (%) | | | TOF (/s) | | | |---------------------------------|--------------------|-----------------------|-----------------|---------------|------------|----------------------------|-----------------|------|------|------------------|------------------|-----------------| | | TEM | CO pulse ^b | size (nm) | (min) | (%) | (10 ⁻⁵ mol/s/g) | COL | HCAL | HCOL | TEM | CO pulse | XRD | | 5 wt% Pt/C-CO | 5.3 ± 3.9 | 9.3 | 8.0 | 20 | 36.2 | 2.0 | 62.4 | 30.9 | 6.7 | 0.39 | 0.66 | 0.60 | | 10 wt% Pt/C-CO | 6.6 ± 3.9 | 16 | 13 | 20 | 28.2 | 1.6±0.33 | 68.7±4.6 | 27.9 | 3.4 | 0.27 ± 0.06 | 0.63 ± 0.14 | 0.54 ± 0.12 | | 20 wt% Pt/C-CO | 9.9 ± 4.1 | 26 | 19 | 15 | 36.6 | 2.7 | 61.1 | 31.9 | 7.0 | 0.33 | 0.84 | 0.99 | | 5 wt% Pt/C-H ₂ | 2.2 ± 1.0 | 3.7 | 11 | 50 | 28.2 | 0.63 | 35.7 | 59.5 | 4.8 | 0.051 | 0.087 | 0.26 | | 10 wt% Pt/C- H_2 | 3.9 ± 2.8 | 5.3 | 17 | 60 | 26.3 | 0.49±0.17 | 32.5 ± 2.3 | 64.6 | 2.9 | 0.039 ± 0.01 | 0.051 ± 0.01 | 0.17 ± 0.01 | | 20 wt% Pt/C- H_2 | 4.8 ± 2.8 | 7.0 | 19 | 60 | 35.6 | 0.66 | 34.5 | 59.7 | 5.8 | 0.030 | 0.042 | 0.15 | | 50 wt% Pt/C- H_2 | 6.9 ± 3.4 | 13 | 16 | 20 | 24.1 | 1.3 | 28.9 | 58.0 | 13.1 | 0.033 | 0.069 | 0.078 | | 10 wt% Pt/C-hCO | 6.3 ± 3.3 | 9.9 | 9.4 | 15 | 34.1 | 2.5 | 55.0 | 35.6 | 9.4 | 0.30 | 0.48 | 0.45 | | 10 wt% Pt/C-hCO-500 | 7.4 ± 3.2 | 17 | 9.9 | 13 | 32.7 | 2.8 | 63.0 | 31.6 | 5.4 | 0.51 | 1.1 | 0.66 | | 10 wt% Pt/C-H ₂ -500 | 6.0 ± 3.7 | 14 | 18 | 60 | 26.5 | 0.49 | 38.4 | 57.2 | 4.4 | 0.054 | 0.12 | 0.16 | | | | | | | | | | | | | | | $[^]a$ Reaction conditions: catalyst 10 mg : toluene : cinnamaldehyde : o-xylene = 10 : 1 : 1 (mol%), distilled water 0.5 mL, 120 °C, and 1.0 MPa H₂ pressure. ^b Calculated from Pt dispersion assuming spherical Pt particles.