Supporting Information

Thiophene-Modified Doubleshell Hollow g-C₃N₄ Nanosphere Boosts

NADH Regeneration via Synergistic Enhancement of Charge

Excitation and Separation

Jialin Meng^{a#}, Yao Tian^{a#}, Congfa Li^b, Xue Lin^b, Zhenyang Wang^{cd}, Liming Sun^e, Yinuo Zhou^a, Jiansheng Li^a, Nan Yang^a, Yongchao Zong^a, Feng Li^a, Yingxiu Cao^a, and Hao Song^a*

^a Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

- ^b College of Food Science and Technology, Hainan University, Haikou 570228, China
- ^c College of Material Science and Engineering, Northeast Forestry University, Harbin, China
- ^d Technology Center, Sinochem Health Company Ltd., Qingdao, China
- ^e Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China

[#] These authors contributed equally to this work.

* Corresponding author. H. Song, E-mail: <u>hsong@tju.edu.cn</u>.

Material	Specific surface area (m ² g ⁻¹)	Pore size distribution (nm)
Bulk C ₃ N ₄	10.3	3.9
ATCN-DSCN-0	71.5	3.9
ATCN-DSCN-0.001	74.3	3.9
ATCN-DSCN-0.005	103.69	3.9
ATCN-DSCN-0.010	60.9	3.9

Table S1. The calculated BET specific surface areas of different C_3N_4 materials

C 1s						
	N-C=N			C-C		
	Position	Area	Area percentage(%)	Position	Area	Area percentage(%)
undoped	288.0	13625.6	87.69	284.6	1912. 6	12.31
doped	287.9	24236.9	77.80	284.6	6917. 6	22.20

Table S2. Relative ratios of N-C=N and C=C of ATCN-DSCN-0 (undoped) and ATCN-DSCN-0.005(doped) by C 1s spectral analysis.

			undoped	doped
	C-N=C	Position	398.4	398.4
		Area	22614.6	41053.4
		Area percentage(%)	66.49	67.77
	N-(C) ₃	Position	399.7	399.7
		Area	7667.9	12911.4
N 1s		Area percentage(%)	22.55	21.31
	C-N=C	Position	401.0	400.9
		Area	2116.4	3869.2
		Area percentage(%)	6.22	6.39
	π bonding	Position	404.5	404.4
		Area	1611.3	2746.7
		Area percentage(%)	4.74	4.53

Table S3. Relative ratios of C-N=C, N-(C)₃ and C-N=C of ATCN-DSCN-0 (undoped) and ATCN-DSCN-0.005 (doped) by N 1s spectral analysis.

S 2p						
	S 2p _{3/2}			S 2p _{1/2}		
	Position	Area	Area percentage(%)	Position	Area	Area percentage(%)
undope d	_	_	_	_	_	-
doped	163.9	381.3	66.67	164.9	190.6	33.33

Table S4. Relative ratios of S $2p_{3/2}$ and S $2p_{1/2}$ of ATCN-DSCN-0 (undoped) and ATCN-DSCN-0.005 (doped) by S 2p spectral analysis.

Figure S1. SEM and TEM images of SiO₂ (template), ATCN-DSCN-0 (undoped), ATCN-DSCN-0.001 (the weight ratio of ATCN: SiO₂ is 0.001) and ATCN-DSCN-0.010 (the weight ratio of ATCN: SiO₂ is 0.010). (a) SEM image of SiO₂, which can be seen the slippy surface of SiO₂. (b) TEM image of SiO₂, which can be seen the hollow doubleshell structure of SiO₂. (c) SEM image of ATCN-DSCN-0, which can be seen the uniformity and the rough surface of ATCN-DSCN-0. (d) TEM image of ATCN-DSCN-0, which can be seen the diameter and shell thickness of ATCN-DSCN-0. (e) SEM image of ATCN-DSCN-0.001, which can be seen the uniformity and the rough surface of ATCN-DSCN-0. (f) TEM image of ATCN-DSCN-0.001, which can be seen the diameter and shell thickness of ATCN-DSCN-0.001. (g) SEM image of ATCN-DSCN-0.010, which can be seen the uniformity and the rough surface of ATCN-DSCN-0.010. (h) TEM image of ATCN-DSCN-0.010, which can be seen the diameter and shell thickness of ATCN-DSCN-0.010. (h)

Figure S2. N₂ adsorption-desorption isotherm and Barret-Joyner-Halenda (BJH) pore size distribution plot (inset) of (a) hollow doubleshell SiO₂ and (b) hollow ATCN-DSCN-0, ATCN-DSCN-0.001 and ATCN-DSCN-0.010.

Figure S3. The surface elements analysis of ATCN-DSCN-0 (undoped DSCN). (a) Full scan X-ray photoelectron spectroscopy (XPS) spectra of ATCN-DSCN-0 (undoped). (b) High-resolution C 1s spectra of ATCN-DSCN-0. (c) High-resolution N 1s spectra of ATCN-DSCN-0. (d) High-resolution S 2p spectrum of thiophene undoped DSCN (ATCN-DSCN-0).

Figure S4. Photo-regenerated NADH yield. The yield of the photo-regenerated NADH with different levels of $[Cp*Rh(bpy)H_2O]^{2+}$ (pH=7, and ATCN-DSCN-0.005 was used).

Figure S5. The UV-vis diffuse reflectance spectra (UV-Vis DRS) of thiophene (ATCN).

Figure S6. The photoluminescence spectra (PL) of thiophene (ATCN) with an excitation wavelength of 350 nm.

Figure S7. The NMR spectrum of the organometallic compound [Cp*Rh(bpy)Cl]Cl. ¹H NMR (300 MHz, CDCl3): Cp*[Rh(2,2'-bpy)] δ (ppm) = 9.08 (d, 2H, H-3,3'), 8.86 (d, 2H, H-6,6'), 8.26 (t, 2H, H-5,5'), 7.84 (t, 2H, H-4,4'), 1.75 (s, 15H, Cp*).

Figure S8. The mass spectra of compound [Cp*Rh(bpy)Cl]Cl dissolved in methanol, which indicates that the gross mass of [Cp*Rh(bpy)Cl]Cl is approximately 465.9196.