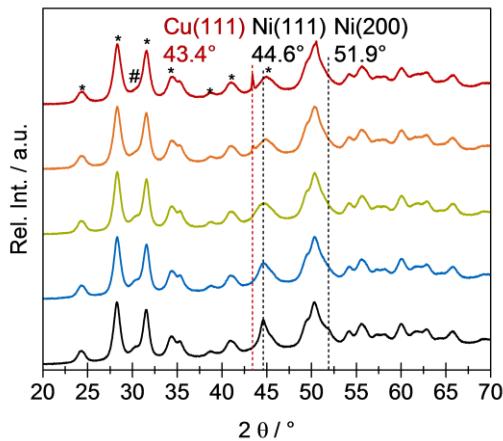


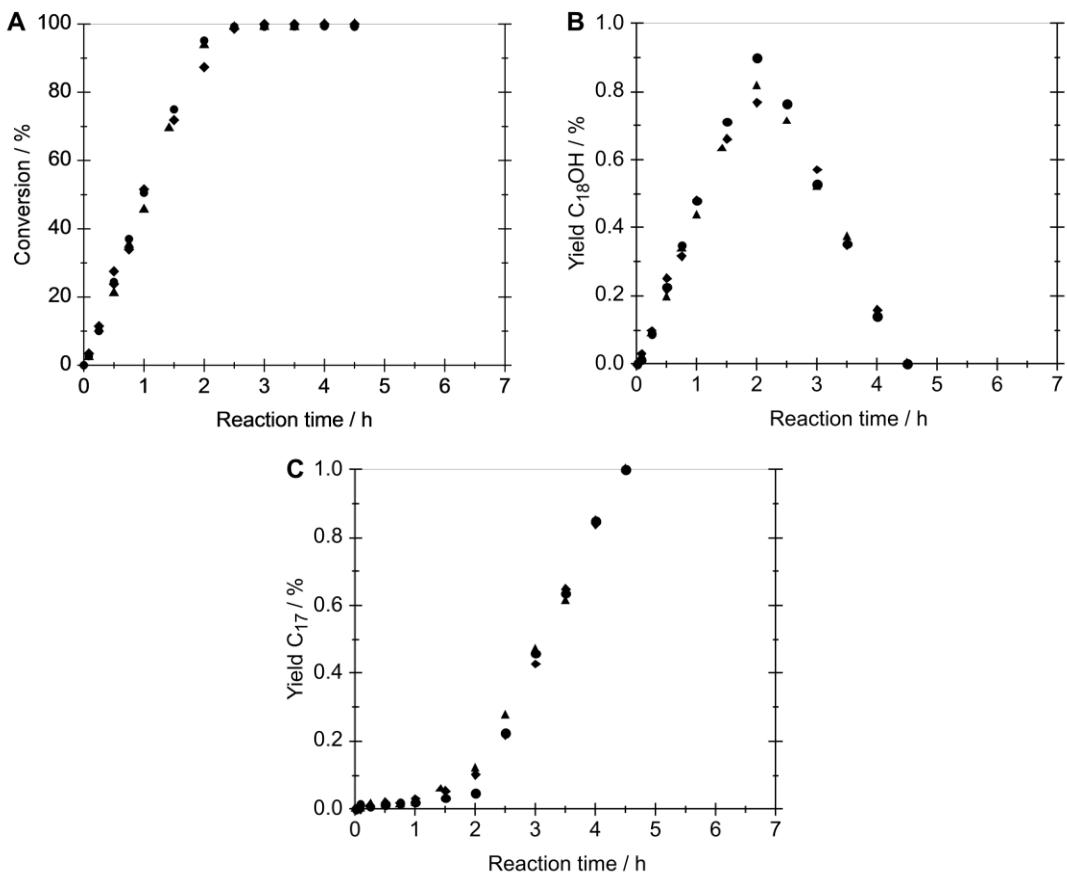
Supporting Information

Rate enhancement by Cu in $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ bimetallic catalysts for hydrodeoxygenation of stearic acid

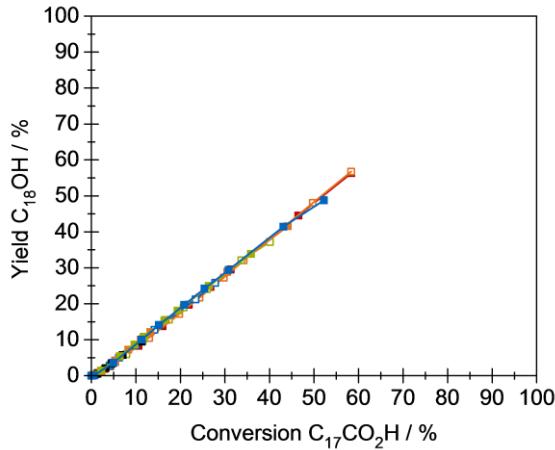
Christoph Denk,^a Sebastian Foraita,^a Libor Kovarik,^{b,c} Kelsey Stoerzinger,^{b,d} Yue Liu,^a
Eszter Baráth^{*a} and Johannes A. Lercher^{*a,b}

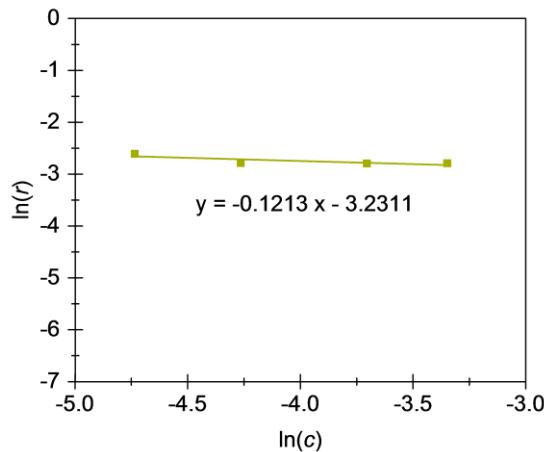

^a Department of Chemistry and Catalysis Research Center, Technische Universität München
Lichtenbergstraße 4, 85747 Garching (Germany)

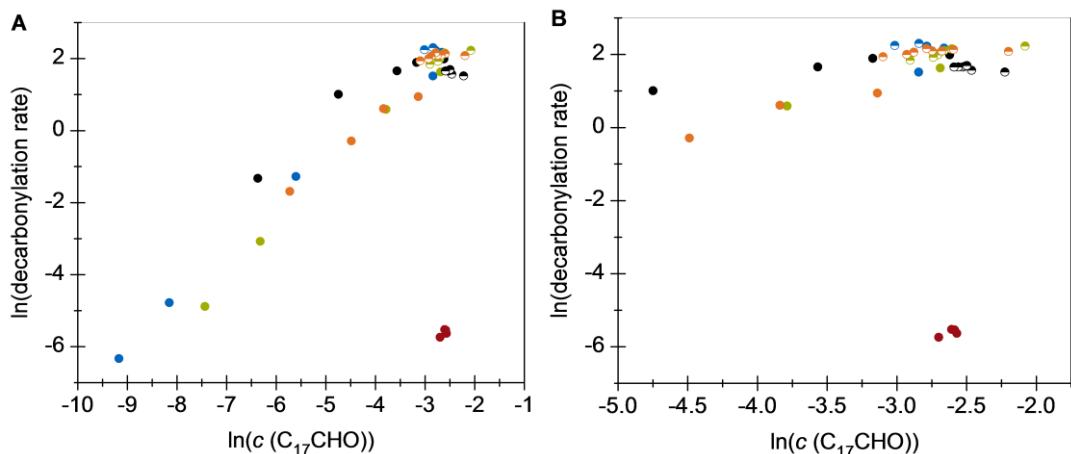
^b Institute for Integrated Catalysis, Pacific Northwest National Laboratory 902 Battelle Boulevard, Richland,
WA 99352 (USA)

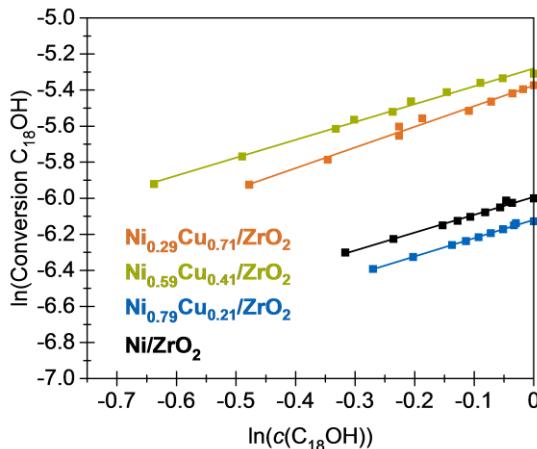

^c Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)

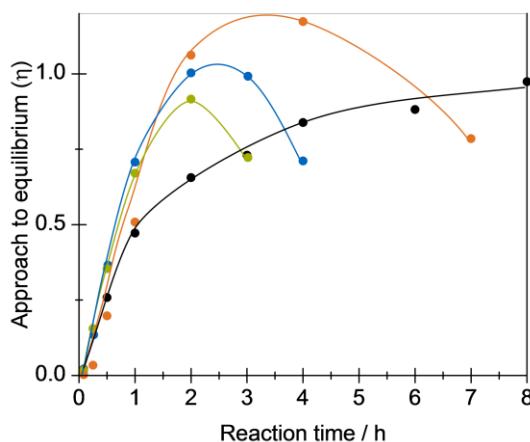
^d Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
WA 99352 (USA)

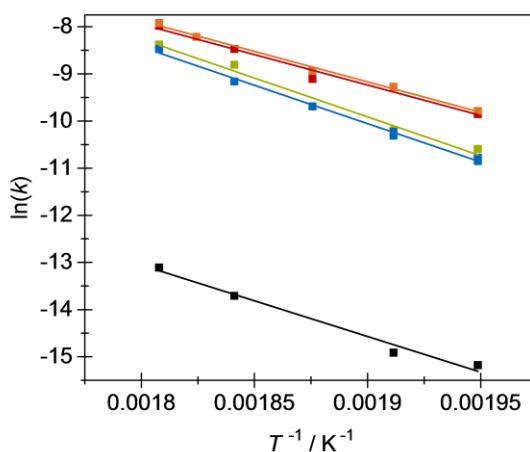

E-mail: eszter.barath@tum.de, johannes.lercher@ch.tum.de


Fig. S1 XRD patterns of $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ ($x = 1, 0.79, 0.59, 0.29, 0$) in the 2θ range of $20\text{--}70^\circ$. Monoclinic ZrO_2 (*), tetragonal ZrO_2 (#).


Fig. S2 Recycling experiments (**S2A**/Conversion vs reaction time; **S2B**/Yield of C_{18}OH vs reaction time; **S2C**/Yield C_{17} vs reaction time). (● 1st, ♦ 2nd, ■ 3rd cycle) Reaction conditions: stearic acid (0.212 g), $\text{Ni}_{0.59}\text{Cu}_{0.41}/\text{ZrO}_2$ (0.085 g), *n*-dodecane (100 mL), 260 °C, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm. At 25°C stearic acid (0.212 g) was added for a new experiment. The reaction volume was balanced with *n*-dodecane to 100 mL prior. Assuming that 0 % *n*-heptadecane was produced within the first 5 min of reaction time, this amount was subtracted in runs 2 and 3 from each sample.


Fig. S3 Yield of 1-octadecanol as function of stearic acid conversion over $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ ($x = 1, 0.79, 0.59, 0.29, 0$) and respective physical mixtures (empty symbols) Reaction conditions: Stearic acid (0.5 g), Stearic acid (0.5 g), (x) Ni/ZrO_2 and $(1-x)$ Cu/ZrO_2 catalyst ($x = 1, 0.79, 0.59, 0.29, 0$; sum 0.05 g), *n*-dodecane (100 mL), 260 °C, $p(\text{H}_2) = 40$ bar, 600 rpm.


Fig. S4 Determination of reaction order of stearic acid for $\text{Ni}_{0.59}\text{Cu}_{0.41}/\text{ZrO}_2$. Reaction conditions: Stearic acid (1.0 – 0.250 g), $\text{Ni}_{0.59}\text{Cu}_{0.41}/\text{ZrO}_2$ catalyst (0.05 g), *n*-dodecane (100 mL), $T = 260, \text{ }^\circ\text{C}$, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.


Fig. S5 Determination of reaction order of 1-octadecanal for $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ ($x = 1, 0.79, 0.59, 0.29$); **A** full concentration range first order regime $-10 < \ln(c(\text{C}_{17}\text{CHO})) < -5$ and zero order regime $\ln(c(\text{C}_{17}\text{CHO})) > -4$; **B** zero order regime. Reaction conditions: Stearic acid (0.5 g), $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.59, 0.29, 0$; 0.2 g (full symbols), 0.05g half symbols), *n*-dodecane (100 mL), $T = 260, \text{ }^\circ\text{C}$, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.

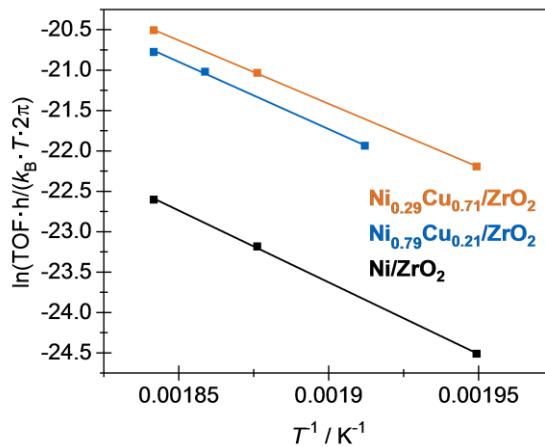

Fig. S6 Determination of reaction order of 1-octadecanol conversion for $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ ($x = 1, 0.79, 0.59, 0.29$) Reaction conditions: 1-octadecanol (0.5 g), $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.59, 0.29$; 0.05 g), *n*-dodecane (100 mL), $T = 260$ °C, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.

Fig. S7 Approach to equilibrium between 1-octadecanol and 1-octadecanal versus reaction time for $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ ($x = 1, 0.79, 0.59, 0.29$) Reaction conditions: Stearic acid (0.5 g), $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.59, 0.29$; 0.2 g), *n*-dodecane (100 mL), $T = 260$ °C, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.

Fig. S8 Arrhenius-plot for the conversion of stearic acid to 1-octadecanol on $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.59, 0.29, 0$) Reaction conditions: Stearic acid (0.5 g), $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.59, 0.29, 0$; 0.05 g), *n*-dodecane (100 mL), $T = 240$ — 280 °C, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.

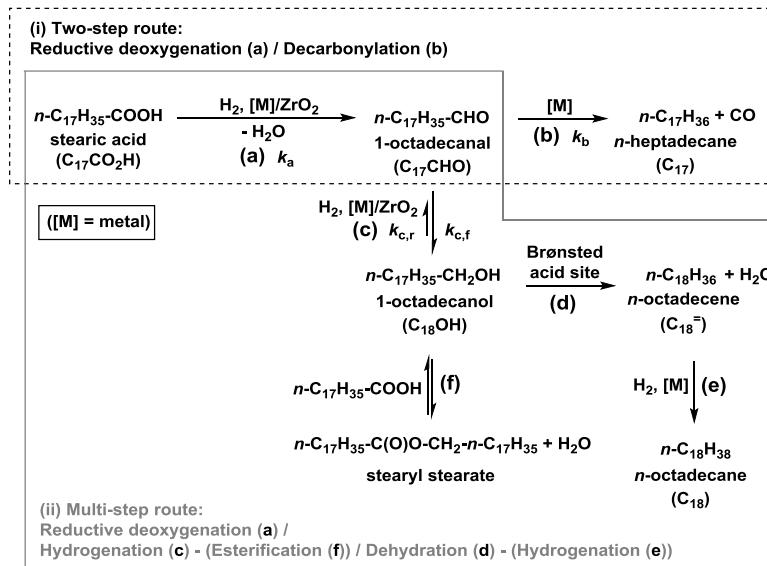

Fig. S9 Determining ΔH and ΔS by using Eyring equation for the decarbonylation of 1-octadecanal over $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.29$) Reaction conditions: 1-octadecanol (0.5 g), $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ catalyst ($x = 1, 0.79, 0.29$; 0.05 g), *n*-dodecane (100 mL), $T = 240 - 270^\circ\text{C}$, $p(\text{H}_2) = 40$ bar, stirring at 600 rpm.

Table S1 Detailed amounts of ZrO_2 , $\text{Ni}(\text{NO}_3)_2 \times 6\text{H}_2\text{O}$ and $\text{Cu}(\text{NO}_3)_2 \times x\text{H}_2\text{O}$ to synthesize bimetallic $\text{Ni}_x\text{Cu}_{1-x}/\text{ZrO}_2$ via wet impregnation technique.

Catalyst	$m[\text{ZrO}_2]$ / g	$m[\text{Ni}(\text{NO}_3)_2 \times 6\text{H}_2\text{O}]$ / g	$m[\text{Cu}(\text{NO}_3)_2 \times x\text{H}_2\text{O}]$ / g
Ni/ZrO_2	7.0	3.85	–
$\text{Ni}_{0.79}\text{Cu}_{0.21}/\text{ZrO}_2$	7.0	2.89	0.57
$\text{Ni}_{0.59}\text{Cu}_{0.41}/\text{ZrO}_2$	7.0	1.93	1.15
$\text{Ni}_{0.29}\text{Cu}_{0.71}/\text{ZrO}_2$	7.0	0.96	1.72
Cu/ZrO_2	7.0	–	2.30

Kinetic analysis

The kinetic analysis was made based on the below reaction network with the analysis of step (a), (b) (c). (The same scheme in the manuscript is numbered as **Scheme 1**). The reaction rate constant in each step is given as well.

Stearic acid, 1-octadecanal and 1-octadecanol competitively adsorb on catalyst, hence their coverage on catalysts are expressed as:

$$\theta_{\text{Acid}} = \frac{K_{\text{Acid}} c_{\text{Acid}}}{1 + K_{\text{Acid}} c_{\text{Acid}} + K_{\text{Ald}} c_{\text{Ald}} + K_{\text{Alco}} c_{\text{Alco}}} \quad (\text{Eqn S1})$$

$$\theta_{\text{Ald}} = \frac{K_{\text{Ald}} c_{\text{Ald}}}{1 + K_{\text{Acid}} c_{\text{Acid}} + K_{\text{Ald}} c_{\text{Ald}} + K_{\text{Alco}} c_{\text{Alco}}} \quad (\text{Eqn S2})$$

$$\theta_{\text{Alco}} = \frac{K_{\text{Alco}} c_{\text{Alco}}}{1 + K_{\text{Acid}} c_{\text{Acid}} + K_{\text{Ald}} c_{\text{Ald}} + K_{\text{Alco}} c_{\text{Alco}}} \quad (\text{Eqn S3})$$

The θ_{Acid} , θ_{Ald} and θ_{Alco} are the coverages of stearic acid, 1-octadecanal and 1-octadecanol on the catalyst; The K_{Acid} , K_{Ald} and K_{Alco} are their adsorption constants and the c_{Acid} , c_{Ald} and c_{Alco} are the their concentrations.

Their reaction rates are given by

$$\frac{dc_{\text{Acid}}}{dt} = -k_a n_{\text{cat}} \theta_{\text{Acid}} \quad (\text{Eqn S4})$$

$$\frac{dc_{\text{Ald}}}{dt} = k_a n_{\text{cat}} \theta_{\text{Acid}} - k_b n_{\text{cat}} \theta_{\text{Ald}} - k_{c,f} n_{\text{cat}} \theta_{\text{Ald}} \quad (\text{Eqn S5})$$

$$\frac{dc_{\text{Alco}}}{dt} = -k_{c,r} n_{\text{cat}} \theta_{\text{Alco}} + k_{c,f} n_{\text{cat}} \theta_{\text{Ald}} \quad (\text{Eqn S6})$$

in which n_{cat} is the number of active site on the catalysts loaded in the reaction. The formation rate of *n*-heptadecane is

$$\frac{dc_{\text{Hept}}}{dt} = k_b n_{\text{cat}} \theta_{\text{Ald}} \quad (\text{Eqn S7})$$

k_a is quantified by measuring the initial conversion rate of acid, where θ_{Ald} , θ_{Alco} are zero. Reaction order of acid being zero indicates that θ_{Acid} is 1.

$$\frac{dc_{\text{Acid}}}{dt} = -k_a n_{\text{cat}} \Rightarrow k_a = -\frac{1}{n_{\text{cat}}} \frac{dc_{\text{Acid}}}{dt} \quad (\text{Eqn S8})$$

Strong inhibition of decarbonylation of aldehyde to alkane by the presence of acid indicates the strong adsorption of acid on catalysts. To determine the decarbonylation rate of aldehyde in absence of stearic acid, we performed the experiments to calculate the decarbonylation rate starting with 1-octadecanol. Since the hydrogenation of the 1-octadecanal is enormously higher than the decarbonylation rate, a direct approach for decarbonylation rates using 1-octadecanal fails.

$$\frac{dc_{\text{Hept}}}{dt} = \frac{n_{\text{cat}} k_b K_{\text{Ald}} c_{\text{Ald}}}{1 + K_{\text{Ald}} c_{\text{Ald}} + K_{\text{Alco}} c_{\text{Alco}}} \quad (\text{Eqn S9})$$

The reaction order of aldehyde is zero for the formation of 1-heptadecane, indicating a strong adsorption of aldehyde than alcohol. ($K_{\text{Ald}} c_{\text{Ald}} \gg K_{\text{Alco}} c_{\text{Alco}}$; $K_{\text{Ald}} c_{\text{Ald}} \gg 1$)

$$\frac{dc_{\text{Hept}}}{dt} = n_{\text{cat}} k_b \Rightarrow k_b = \frac{1}{n_{\text{cat}}} \frac{dc_{\text{Hept}}}{dt} \quad (\text{Eqn S10})$$