Electronic Supplementary Information for

Prussian blue derived Fe₂N for efficiently improving

photocatalytic hydrogen evolution activity of g-C₃N₄ nanosheets

Weiliang Qi, ^a Siqi Liu, ^{*b,c} Fei Li, ^{*a} Heng Jiang, ^{*a} Zhixing Cheng, ^{b,c} Shanlin Zhao ^a and Minghui Yang ^{*b,c}

^aCollege of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun 113001, PR China

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*^aE-mail: weizn@126.com, hjiang78@hotmail.com.

*^{b,c}E-mail: myang@nimte.ac.cn, liusiqi@nimte.ac.cn.

Table of contents

I.Experimental Procedures

Electrochemical Measurements

II.Supplementary illustrations and explanations

Scheme S1. The schematic illustration for the preparation of Fe_2N and $g-C_3N_4$ nanosheets.

Fig. S1 (a) TEM and (b) HRTEM images image of Fe_2N nanoparticles. (c) The diameters statistic histogram of Fe_2N Nanoparticles.

Fig. S2 The EDS mapping of the Fe₂N nanoparticles.

Fig. S3 The X-ray photoelectron survey spectrum of Fe₂N nanoparticles.

Fig. S4 Electrical impedance spectra of Prussian Blue nanocubes and Fe₂N nanoparticles.

Fig. S5 UV-vis absorption spectra of Prussian Blue nanocubes and Fe_2N nanoparticles.

Fig. S6 (a) The FT-IR spectra of pure $g-C_3N_4$, CTAB modified $g-C_3N_4$ and $g-C_3N_4$ -Fe₂N nanocomposites. (b) Zeta potential measurements of Fe₂N nanoparticles. (c) XRD pattern of pure $g-C_3N_4$ and a series of $g-C_3N_4$ -Fe₂N nanocomposites.

Fig. S7 HRTEM image of pure g-C₃N₄ nanosheets.

Fig. S8 (a) The X-ray photoelectron survey spectrum of $g-C_3N_4$ and $g-C_3N_4$ -Fe₂N. High-resolution spectrum of (b) C 1s and (c) N 1s for $g-C_3N_4$ and $g-C_3N_4$ -Fe₂N. High-resolution spectrum of (d) Fe 2P for $g-C_3N_4$ -Fe₂N and pure Fe₂N.

Fig. S9 Tauc plots of the UV–vis spectra for a series of samples.

Fig. S10 Time-dependent photocatalytic H_2 evolution over the g-C₃N₄-Fe₂N nanocomposites with different ratio of Fe₂N.

Fig. S11 Stability examination of H_2 production (evacuation every 3 h) for the g-C₃N₄-7%Fe₂N sample.

Fig. S12. The SEM image of the reacted $g-C_3N_4-7\%Fe_2N$ sample.

Fig. S13. N_2 adsorption–desorption isotherms and the corresponding pore size distribution curves (inset) of g-C₃N₄ and g-C₃N₄-7%Fe₂N.

Table S1. Pore Structure Parameters of g-C₃N₄ and g-C₃N₄-7%Fe₂N.

Table S2. Representative summary on photocatalytic activity of non-noble based photocatalysts toward water splitting.

III.Supplementary References

I.Experimental Procedures

Electrochemical Measurements: The electrochemical tests were conducted on an electrochemical workstation (CHI760E, CH Instrument) with a conventional three electrode cell. A Pt plate was employed as the counter electrode and an Ag/AgCl electrode was used as the reference electrode. The working electrode was prepared on fluorine-doped tin oxide (FTO) glass that was cleaned by sonication in ethanol for 30 min and dried at 353 K. The boundary of FTO glass was protected using the scotch tape. The 5 mg sample and 30 µL Nafion solution (5 wt%) were dispersed in 1 mL of DMF by sonication to get slurry. Then, 40 µL of slurry was spread onto the pretreated FTO glass. After air at room temperature, the working electrode was further dried at 393 K for 2 h to improve adhesion. Then, the scotch tape was unstuck, and the uncoated part of the electrode was isolated with epoxy resin. The exposed area of the working electrode was 0.25 cm^2 . The photocurrent measurements were carried out with the electrolyte was 0.2 M aqueous Na₂SO₄ solution. The electrochemical impedance spectroscopy (EIS) measurements were performed in 0.2 M aqueous Na_2SO_4 solution by applying an AC voltage with -1.3 mV amplitude in a frequency range from 1 Hz to 100 kHz. The polarization curve is performed in the same above mentioned three-electrode system, while the bias sweep range is from -1.6 to 0 V vs Ag/AgCl the electrolyte was 0.2 M aqueous Na₂SO₄ solution.

II.Supplementary illustrations and explanations

Scheme S1. The schematic illustration for the preparation of Fe₂N and g-C₃N₄ nanosheets.

Note: Scheme S1 c is the concrete step and matters need attention of the synthesis of Fe_2N nanoparticles by Prussian Blue nanocubes.

Fig. S1 (a) TEM and (b) HRTEM images image of Fe₂N nanoparticles. (c) The diameters statistic histogram of Fe₂N Nanoparticles.

Fig. S2 The EDS mapping of the Fe_2N nanoparticles.

Fig. S3 The X-ray photoelectron survey spectrum of Fe_2N nanoparticles.

Fig. S4 Electrical impedance spectra of Prussian Blue nanocubes and Fe₂N nanoparticles.

Fig. S5 UV-vis absorption spectra of Prussian Blue nanocubes and Fe₂N nanoparticles.

Fig. S6 (a) The FT-IR spectra of pure g-C₃N₄, CTAB modified g-C₃N₄ and g-C₃N₄-Fe₂N nanocomposites. (b) Zeta potential measurements of Fe₂N nanoparticles. (c) XRD pattern of pure $g-C_3N_4$ and a series of $g-C_3N_4$ -Fe₂N nanocomposites.

Fig. S7 HRTEM image of pure g-C₃N₄ nanosheets.

Fig. S8 (a) The X-ray photoelectron survey spectrum of $g-C_3N_4$ and $g-C_3N_4$ -Fe₂N. High-resolution spectrum of (b) C 1s and (c) N 1s for $g-C_3N_4$ and $g-C_3N_4$ -Fe₂N. High-resolution spectrum of (d) Fe 2P for $g-C_3N_4$ -Fe₂N and pure Fe₂N.

Note: The peak of O 1s of the $g-C_3N_4$ -Fe₂N nanocomposite is an obvious stronger than that of the pure $g-C_3N_4$, in the survey spectrum. It has been proved to be the result of the modification on the surface of the $g-C_3N_4$ by the CTAB. Meanwhile, the $g-C_3N_4$ -Fe₂N nanocomposite has an extra peak at 708 eV corresponding to the Fe 2p.

Fig. S9 Tauc plots of the UV-vis spectra for a series of samples.

Fig. S10 Time-dependent photocatalytic H_2 evolution over the g-C₃N₄-Fe₂N nanocomposites with different ratio of Fe₂N.

Fig. S11 Stability examination of H_2 production (evacuation every 3 h) for the g-C₃N₄-7%Fe₂N sample.

Fig. S12. The SEM image of the reacted $g-C_3N_4-7\%Fe_2N$ sample.

Fig. S13. N₂ adsorption–desorption isotherms and the corresponding pore size distribution curves (inset) of g-C₃N₄ and g-C₃N₄–7%Fe₂N.

Table S1. Pore Structure P	Parameters of	$g-C_3N_4$ and g	s-C ₃ N ₄ -7%Fe ₂ N
----------------------------	---------------	--------------------	--

Photocatalyst	BET surface area (m ² g ⁻¹)	mean pore diameter (nm)	pore volume (cm ³ g ⁻¹)
g-C ₃ N ₄	97.96	14.66	0.38
g-C ₃ N ₄ -7%Fe ₂ N	81.11	16.49	0.44

Photocatalyst	Co-catalysts/	Light source	Reaction conditions	PHER	Ref.
	mass ratio			rate ^a	
g-C ₃ N ₄	Ni _x P _y /5 wt%	Xe light 300W,	Aqueous TEOA solution	34	[S1]
		λ>420 nm	(25%)		
CdS	NiC /1 wt%	Xe light 350W,	Aqueous solution of	7.76	[S2]
		λ>420 nm	Na_2S (0.25 M) and		
			Na ₂ SO ₃ (0.25 M)		
$CdS/g-C_3N_4$	Ni(OH) ₂ / 4.76	Xe light 300W,	Aqueous solution of	25.65	[S3]
	wt%	λ>420 nm	Na_2S (0.5 M) and Na_2SO_3		
			(0.7 M)		
ZnIn ₂ S ₄	MoC-QDs/C /	Xe light 300W,	Aqueous lactic acid	48	[S4]
	2.5 wt%	λ>400 nm	solution (10%)		
$g-C_3N_4$	CoO	Xe light 300W,	Aqueous lactic acid	3	[S5]
		λ>400 nm	solution (10%)		
CdS	Mo ₂ C@C/	Xe light 300W,	Aqueous lactic acid	26	[S6]
	2 wt%	λ>420 nm	solution (10%)		
$g-C_3N_4$	$Ni_{x}Co_{1-x}S_{2}$ /	White LED,	Aqueous TEOA solution	9.08	[S7]
	5 wt%	λ>420 nm	(15%), Eosin Y-sensitized		
			catalyst (10mg)		
CdS	MoS ₂ / 2 wt%	Xe light 300W,	Aqueous lactic acid	64.9	[S8]
		λ>420 nm	solution (10%)		
$g-C_3N_4$	$Fe_2N/7$ wt%	Xe light 300W,	Aqueous TEOA solution	48	This
		λ>400 nm	(10%)		work

Table S2. Representative summary on photocatalytic activity of non-noble based photocatalyststoward water splitting H_2 evolution.

Note: ^a**PHER rate** denotes the hydrogen evolution rate of times higher than pristine photocatalyst.

III.Supplementary References:

[S1] Z. Sun, M. Zhu, M. Fujitsuka, A. Wang, C. Shi, T. Majima, ACS Appl Mater Interfaces, 9 (2017) 30583-30590.

[S2] S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Applied Catalysis B: Environmental, 227 (2018) 218-228.

[S3] Z. Yan, Z. Sun, X. Liu, H. Jia, P. Du, Nanoscale, 8 (2016) 4748-4756.

[S4] F. Gao, Y. Zhao, L. Zhang, B. Wang, Y. Wang, X. Huang, K. Wang, W. Feng, P. Liu, Journal of Materials Chemistry A, 6 (2018) 18979-18986.

[S5] Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, ACS Appl Mater Interfaces, 9 (2017) 12427-12435.

[S6] Y.-X. Pan, J.-B. Peng, S. Xin, Y. You, Y.-L. Men, F. Zhang, M.-Y. Duan, Y. Cui, Z.-Q. Sun, J. Song, ACS Sustainable Chemistry & Engineering, 5 (2017) 5449-5456.

[S7] K. Fan, Z. Jin, H. Yang, D. Liu, H. Hu, Y. Bi, Sci Rep, 7 (2017) 7710.

[S8] B. Han, S. Liu, Y.-J. Xu, Z.-R. Tang, Applied Catalysis B: Environmental, 202 (2017) 298-304.