Improving a Photocatalytic Free Radical Polymerization by

Hydrochloric Acid

Yulan Zhou^a, Wanfeng Liao^b and Xiuyuan Ni^{c,*}

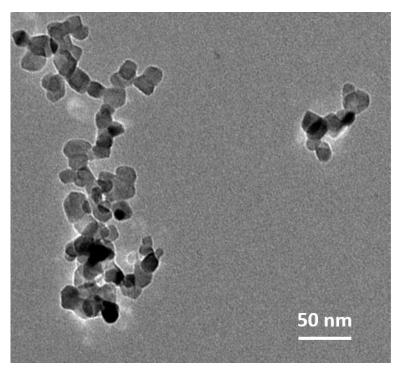


Fig. S1 The transmission electron microscope image of the TiO₂ nanoparticles

The transmission electron microscope investigations were performed on a Tecnai G20 TWIN transmission electron microscope at an accelerating voltage of 200 kV.

^{a,b} State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, The People's Republic of China

^{C,*} State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, The People's Republic of China. Email address: xyni@fudan.edu.cn

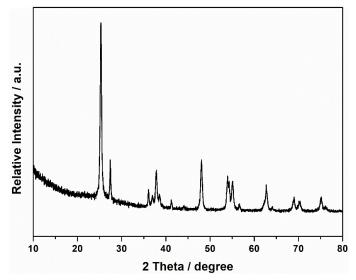


Fig. S2 The X-ray diffraction pattern of the TiO₂ nanoparticles

The X-ray diffraction pattern was recorded by a BRUKER D8 A25 X-ray diffractometer.

The X-ray diffraction pattern of the TiO_2 nanoparticles was shown in Figure S2. The Scherrer Formula (equation S1) was used to calculate the size of nanoparticles.

$$D = \frac{K\gamma}{B\cos\theta}$$
(S1)

Where K is the Scherrer's constant. λ is the wavelength of X-rays applied as 0.154056 nm. θ is the diffraction angle. B is the full width at the half-maximum of the diffraction peak. According to the peak at 2θ =48.08⁰, it is calculated out that the average size of the nanoparticles (i.e. D value) is 20 nm, which is in accordance with the label of the Degussa P25 TiO₂.

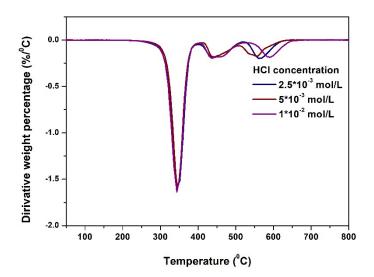


Fig. S3 DTG curves of photocatalytic polymerization crude product. The concentration of $\rm TiO_2$ in aqueous suspension is 1 g/L