Supplementary Information

New insight into enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene

Chong Chen,^{*a,b*} Minglei Sun,^{*a,b*} Zhongpan Hu,^{*a,b*} Jintao Ren,^{*a,b*} Shoumin Zhang,^{*a,b*} Zhong-Yong Yuan^{*a,b*,*}

^{*a*} National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.

* Corresponding author. *E-mail:* zyyuan@nankai.edu.cn

Fig. S1 Propylene yield *vs.* reaction time over 10Zn0.1Pt/HZ catalyst at different reaction temperature. (Reaction conditions: Temperature: 525 °C, WHSV: 0.24 h⁻¹)

Fig. S2 TEM images of 10Zn0.1Pt/HZ (a) and 10Zn1Pt/HZ (d); (b, c) and (e, f) show the corresponding EDX elemental mappings of the 10Zn0.1Pt/HZ and 10Zn1Pt/HZ catalysts, respectively.

Fig. S3 TGA profile of the spent 10Zn0.1Pt/HZ catalyst after 65 h time on stream.

Fig. S4 Zn LMM spectra of the fresh and spent 10Zn0.1Pt/HZ catalysts.

Fig. S5 Propane conversion (a) and propylene selectivity (b) *vs.* reaction time over the 10Zn0.05Pt/HZ, 5Zn0.1Pt/HZ and 10Zn0.1Pt/HZ catalysts. (Reaction conditions: Temperature: 525 °C, WHSV: 0.24 h^{-1})

Catalyst	10Zn0.1Pt/HZ				
Total Flow (mL/min)	20.0 (5% C ₃ H ₈ /N ₂)				
WHSV (h ⁻¹)	0.24	0.4	2.0	4.0	
Mass Cat. (g)	0.5	0.3	0.1	0.05	
Conversion – Initial (%)	56.2	52.73	46.52	37.28	
Selectivity –Initial (%)	C ₃ H ₆ - 77.8	C ₃ H ₆ - 85.3	C ₃ H ₆ - 91.5	C ₃ H ₆ - 95.0	
	C ₂ H ₄ - 7.0	C ₂ H ₄ - 4.5	C ₂ H ₄ - 2.3	C ₂ H ₄ - 3.0	
	C ₂ H ₆ - 11.6	C ₂ H ₆ - 8.5	C ₂ H ₆ - 1.0	C ₂ H ₆ - 1.0	
	CH ₄ - 3.6	CH ₄ -1.7	CH ₄ - 5.2	CH ₄ -1.0	
Conversion - 5 h (%)	54.63	45.1	30.0	25.68	
Selectivity - 5 h (%)	C ₃ H ₆ - 88.4	C ₃ H ₆ - 92.3	C ₃ H ₆ - 95.4	C ₃ H ₆ - 96.5	
	C ₂ H ₄ - 6.4	C ₂ H ₄ - 4.6	C ₂ H ₄ - 3.0	C ₂ H ₄ - 2.2	
	C ₂ H ₆ - 2.9	C ₂ H ₆ - 2.1	C ₂ H ₆ - 0.5	C ₂ H ₆ - 0.1	
	CH ₄ - 2.3	CH ₄ - 1.0	CH ₄ - 1.1	CH ₄ - 1.2	

Table S1 Summary of catalytic propane dehydrogenation at 525 °C utilizing10Zn0.1Pt/HZ at various WHSVs.

Catalysts	RT(°C)	WHSV (h ⁻¹)	Con.(%) ^b	Sel.(%) ^c	Yie.(%)	Ref.
	а				d	
PtGa/CeO ₂ -Al ₂ O ₃	600	10	39.4	99.6	39.2	1
PtSn/Al ₂ O ₃ Nanosheet	590	9.4	48.7	98.3	47.9	2
PtSn/SAPO-34	600	5.6	25.1	88.4	22.2	3
0.6Pt1.5In/Mg(Al)O-x	620	3.3	61.3	96.0	58.8	4
PtSn/HZSM-5	590	3.0	26.0	75.0	19.5	5
PtSn/mesoporous alumina	590	3.0	30.0	80.1	24.0	6
0.5Pt0.6Sn/TS-1	590	3.0	53.8	92.0	49.5	7
PtSnNa/Ce-ZSM-5	590	3.0	41.8	95.8	40.0	8
PtSnNa/SUZ-4	590	3.0	20.5	92.4	18.9	9
PtZn/Na-Beta	555	2.6	29.0	90.0	26.1	10
0.5Pt1Sn0.2Al/SBA-15	590	2.5	51.2	98.5	50.4	11
Pt/Zn,Na-MCM-22	555	2.3	31.0	82.9	25.7	12
Pt ⁰ /SiO ₂	550	2.2	19.0	59.2	11.2	13
$Ga^{\delta+}Pt^0/SiO_2$	550	2.0	40.7	63.5	25.8	13
Cu _{0.6} Pt _{0.1} @S-1	610	1.5	46	93.2	42.9	14
0.1Pt10Zn/HZSM-5	525	2.0	46.8	91.5	42.6	This
						work

 Table S2 Catalytic performance comparison of various catalysts in PDH.

^{*a*} Reaction temperature. ^{*b*} Conversion of propane. ^{*c*} Selectivity of propylene. ^{*d*} Yield of propylene.

Samples	Weak acidity	eak acidity Medium acidity		Total acidity
	$(\text{mmol}_{\text{NH3}}\text{g}^{-1})$	$(\text{mmol}_{\text{NH3}}\text{g}^{-1})$	$(\text{mmol}_{\text{NH3}}\text{g}^{-1})$	$(\text{mmol}_{\text{NH3}}\text{g}^{-1})$
HZ	0.42674	0	0.62258	1.04932
10Zn/HZ	0.17545	0.35868	0.3233	0.85743
10Zn1Pt/HZ	0.09642	0.15104	0.16538	0.41284
10Zn0.5Pt/HZ	0.10027	0.16337	0.09004	0.35368
10Zn0.1Pt/HZ	0.05428	0.18888	0.08264	0.32582

References

- 1. T. Wang, F. Jiang, G. Liu, L. Zeng, Z.-j. Zhao and J. Gong, *AlChE J.*, 2016, **62**, 4365-4376.
- L. Shi, G. M. Deng, W. C. Li, S. Miao, Q. N. Wang, W. P. Zhang and A. H. Lu, Angew. Chem. Int. Ed., 2015, 54, 13994-13998.
- 3. Z. Nawaz, X. Tang, Q. Zhang, D. Wang and W. Fei, *Catal. Commun.*, 2009, **10**, 1925-1930.
- 4. K. Xia, W.-Z. Lang, P.-P. Li, X. Yan and Y.-J. Guo, *J. Catal.*, 2016, **338**, 104-114.
- 5. Y. Zhang, Y. Zhou, A. Qiu, Y. Wang, Y. Xu and P. Wu, *Catal. Commun.*, 2006, **7**, 860-866.
- Y. Zhang, Y. Zhou, J. Shi, S. Zhou, X. Sheng, Z. Zhang and S. Xiang, J. Mol. Catal. A: Chem., 2014, 381, 138-147.
- 7. J. Li, J. Li, Z. Zhao, X. Fan, J. Liu, Y. Wei, A. Duan, Z. Xie and Q. Liu, *J. Catal.*, 2017, **352**, 361-370.
- 8. Y. Zhang, M. Xue, Y. Zhou, H. Zhang, W. Wang, Q. Wang and X. Sheng, *RSC Adv.*, 2016, **6**, 29410-29422.
- 9. H. Zhou, J. Gong, B. Xu, S. Deng, Y. Ding, L. Yu and Y. Fan, *Chin. J. Catal.*, 2017, **38**, 529-536.
- 10. P. L. De Cola, R. Gläser and J. Weitkamp, *Appl. Catal., A*, 2006, **306**, 85-97.
- 11. X. Fan, J. Li, Z. Zhao, Y. Wei, J. Liu, A. Duan and G. Jiang, *Catal. Sci. Technol.*, 2015, **5**, 339-350.
- 12. I. Kley and Y. Traa, *Microporous Mesoporous Mater.*, 2012, **164**, 145-147.
- 13. K. Searles, K. W. Chan, J. A. Mendes Burak, D. Zemlyanov, O. Safonova and C. Coperet, *J Am Chem Soc*, 2018, **140**, 11674-11679.
- 14. X. Zhang, N. He, C. Liu and H. Guo, *Catal. Lett.*, 2019, DOI: 10.1007/s10562-019-02671-4.