Electronic Supplementary Information (ESI):

Comprehensive study the promotional mechanism of F on the Ce-Mo/TiO₂ catalysts for wide temperature NH₃-SCR performance: The activation of the surface \equiv Ti-F bonds

Guodong Zhang^a, Xiaosheng Huang^{a,b}, Xing Yang^c, Zhicheng Tang^{a*}

(a. State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National

Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of

Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China

b. University of Chinese Academy of Sciences, Beijing 100039, PR China

c. Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, PR China)

Fig. 1S EPR patterns of the $CeTiO_x$, $CeFTiO_x$, $CeMoTiO_x$ and $CeFMoTiO_x$ catalysts.

Fig. 2S N_2 adsorption-desorption isotherms of the all catalysts detectd at 77.3 K (a)

and pore size distribution (b).

Fig. 3S The NO oxidation and the peak-fitting NO-TPD patterns of the CeFTiO_x,

CeMoTiO_x and CeFMoTiO_x catalysts

The oxidation of NO for the CeFTiO_x catalyst was significantly higher than that of other catalysts in the whole test process, while the performance of the CeFMoTiO_x catalyst was close to that of the CeFTiO_x catalyst in the range of 100- 260 °C. The catalyst has better adsorption performance than other catalysts via NO-TPD characterization. The peaks below 200 °C are considered to the physical adsorption of NO by the catalyst, while the peaks above 200 °C were assigned to chemisorption, for instance bridging nitrate or bidentate nitrate species [1-3].

References

- [1] D. Ciuparu, A. Bensalem, L. Pfefferle, Appl. Catal. B: Environ., 26 (2000) 241– 255.
- [2] Y. Wang, A. Zhu, Y Zhang, C.T. Au, X. Yang, C. Shi, Appl. Catal. B: Environ., 81 (2008) 141–149.
- [3] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Chemosphere, 78 (2010) 1160–1166.