Supplementary Information

Role of Sn promoter in Ni/Al₂O₃ catalyst for the deoxygenation of stearic acid and coke formation: experimental and theoretical studies

Promporn Reangchim^{a, b}, Tinnakorn Saelee^{a, c}, Vorranutch Itthibenchapong^{a, *}, Anchalee

Junkaew^a, Narong Chanlek^d, Apiluck Eiad-ua^b, Nawee Kungwan^{c, e}, Kajornsak Faungnawakij^a

^a National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand

^b College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

^c Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
 ^d Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang
 District, Nakhon Ratchasima, 30000 Thailand

^e Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

* Corresponding author: Tel.: +66 2 564 7100 ext. 6615, Fax: +66 2 564 6981,

E-mail address: vorranutch@nanotec.or.th (V. Itthibenchapong)

List of Figures

Fig. S1. Surface slab structures of (a) bare Ni(111), (b) 0.25 MLE NiSn surface and (c) 0.33 MLE NiSn surface. The models are projected along the (010)-direction (left), (100)-direction (middle). The possible active sites of each surface are presented in the right panel.

Fig. S2. XRD patterns of NiSn/*γ*-Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading (wt%).

Fig. S3. H₂-TPR profiles of NiSn/*γ*-Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading.

Fig. S4. TEM images of NiSn/ γ -Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading: (a) 0 wt% Sn, (b) 0.5 wt% Sn, (c) 1 wt% Sn, (d) 3 wt% Sn, (e) 5 wt% Sn, and (f) 7 wt% Sn.

Fig. S5. The projected density of states (PDOS) of bare Ni(111), 0.25 MLE and 0.33 MLE of NiSn surfaces.

Fig. S6. Comparison projected density of states (PDOS) of selected atoms in the C adsorption on (a) Ni(111), (b) 0.25 MLE NiSn and (c) 0.33 MLE NiSn systems. Panel I illustrates p-DOS of the adsorbed C atom. Panel II presents d-DOS of Ni atom of substrates before and during C adsorption. Panel III depicts p-DOS of Sn on 0.25 and 0.33 MLE of NiSn surfaces before and during C adsorption.

Fig. S1. Surface slab structures of (a) bare Ni(111), (b) 0.25 MLE NiSn surface and (c) 0.33 MLE NiSn surface. The models are projected along the (010)-direction (left), (100)-direction (middle). The possible active sites of each surface are presented in the right panel.

Fig. S2. XRD patterns of NiSn/γ-Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading (wt%).

Fig. S3. H₂-TPR profiles of NiSn/γ-Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading.

Fig. S4. TEM images of NiSn/ γ -Al₂O₃ catalysts containing 18 wt% Ni and various Sn loading: (a) 0 wt% Sn, (b) 0.5 wt% Sn, (c) 1wt% Sn, (d) 3 wt% Sn, (e) 5 wt% Sn, and (f) 7 wt% Sn.

Fig. S5. The projected density of states (PDOS) of bare Ni(111), 0.25 MLE and 0.33 MLE of NiSn surfaces.

Fig. S6. Comparison projected density of states (PDOS) of selected atoms in the C adsorption on (a) Ni(111), (b) 0.25 MLE NiSn and (c) 0.33 MLE NiSn systems. Panel I illustrates p-DOS of the adsorbed C atom. Panel II presents d-DOS of Ni atom of substrates before and during C adsorption. Panel III depicts p-DOS of Sn on 0.25 and 0.33 MLE of NiSn surfaces before and during C adsorption.

List of Tables

Table S1 Atomic ratio of Ni and Sn species in NiSn/*γ*-Al₂O₃ catalysts obtained from XPS spectra.

Table S2. All possible adsorption configuration of C atom on Ni(111), 0.25 MLE and 0.33 MLE NiSn surfaces.

Table S3. The d-band center (ε_d) of the nearest Ni atom of the adsorbed C atom on Ni(111), 0.25 and 0.33 MLE of NiSn surface.

Catalysts	Atomic ratio	
	Ni ⁰ /Ni ²⁺	Sn ⁰ /Sn ²⁺
18 wt% Ni/y-Al ₂ O ₃	0.77	n/a
1 wt% Sn 18 wt% Ni/y-Al ₂ O ₃	0.63	0.57
3 wt% Sn 18 wt% Ni/y-Al ₂ O ₃	0.82	0.83
5 wt% Sn 18 wt% Ni/γ-Al ₂ O ₃	2.12	0.61
7 wt% Sn 18 wt% Ni/γ-Al ₂ O ₃	1.78	1.10

Table S1 Atomic ratio of Ni and Sn species in $NiSn/\gamma$ -Al₂O₃ catalysts obtained from XPS spectra.

Table S2. All possible adsorption configuration of C atom on Ni(111), 0.25 MLE and 0.33 MLE NiSn surfaces.

Surface	Geometry	Favored site	E _{ads} (eV)
	Ni ² 1.76 Ni ¹ 1.76 Ni ³ 1.76 Ni ³ 1.76 Ni ³ Ni ³	hcp	-6.99
	Ni ² 1.77 Ni ¹ 1.77 Ni ² 1.77 Ni ² 1.77 Ni ² Ni ³	fcc	-6.95

Surface	Geometry	Favored site	E _{ads} (eV)
0.25 MLE NiSn	Ni ¹ 1.80 Ni ³ 1.80 1.80 Ni ² Sn ²	fcc	-6.24
	Sn ¹ Ni ² Ni ³ Sn ²		
	Sn ³ Ni ¹ 1.78 Ni ³ 1.78 C 1.78 C 1.78 Sn ²	hcp	-6.24
	Sn ¹ Ni ¹ Ni ² Ni ³ Sn ³		

Surface	Geometry	Favored site	E _{ads} (eV)
	2.15 Sn ¹ Contractions Sn ¹ Contractions Sn ¹ Contractions Contractions Sn ¹ Contractions Co	atop Sn	-1.98
0.33 MLE NiSn	Sn ² 1.82 Ni ¹ 0 Sn ² 1.82 Ni ¹ 1.82 Ni ² 0.65 Ni	Ni-Ni Bridge	-5.12

Table S3. The d-band center (ε_d) of the nearest Ni atom of the adsorbed C atom on Ni(111), 0.25 and 0.33 MLE of NiSn surface.

Surface	$\varepsilon_{d}(eV)$		
Surrace	Before C adsorption	During C adsorption	
Ni(111)	-1.27	-1.54	
0.25MLE NiSn	-1.21	-1.68	
0.33MLE NiSn	-1.25	-1.74	