Electronic Supporting Information (ESI)

Aerobic Oxidative Alkynylation of H-Phosphonates and Amides: An Efficient Route for the Synthesis of Alkynylphosphonates and Ynamides by Recyclable Cu-MnO Catalyst

Harshvardhan Singh, Tapan Sahoo, Chiranjit Sen, Sunil M. Galani, and Subhash Chandra Ghosh*

Natural Products and Green Chemistry Division

Academy of Scientific and Innovative Research

CSIR-Central Salt and Marine Chemicals Research Institute

G.B. Marg, Bhavnagar-364002, Gujarat (India)

Fax: (+91) 278-2567562, Tel: +(91)278-2567760 ext. 7210

E-mail: scghosh@csmcri.res.in

Contents

1.	General methods and materials	S 3
2.	Synthesis of spherical Cu-MnO catalyst	S 4
3.	Typical procedure for preparation of alkynylphosphonates (I)	S 4
4.	Typical procedure for preparation of ynamides (II)	S5-S6
5.	Spectral characterization	S7-S-3 0
6.	¹ H, ¹³ C, & ³¹ P Spectra	S31-S118
7.	EDS-SEM analysis and SEM of reused catalyst	S119
8.	References	S120

1. General Methods and materials

All reactions were carried out in oven-dried glassware under standard reaction conditions. All substrates of acetylene, amide and phosphate were purchased from commercial source like S. D. Fine chemicals Ltd India and TCI Chemicals (India) Pvt. Ltd and used without further purification. All the solvents were purchased from S. D. Fine chemicals Ltd India and TCI Chemicals (India) Pvt. Ltd. and dried through standard procedure and stored under nitrogen. Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel 60 F₂₅₄ plates. Visualization on TLC was achieved by UV light (254 nm). Flash column chromatography purification of compounds was carried out by gradient elution using ethyl acetate (EA) in light petroleum ether (PE) or Hexane unless otherwise stated. ¹H, ¹³C & ³¹P NMR was recorded on 600/150/243MHz. NMR spectrometer, in CDCl₃ unless otherwise stated, using either TMS or the undeuterated solvent residual signal as the reference The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, td = triplet of doublet. Coupling constants, J, were reported in hertz unit (Hz). Mass spectral data were obtained from ADCIF division of our Institution by using electro spray ionization time-of-flight (ESI-TOF) mode on mass spectrometer.

Calcd	Calculated
MnO	Manganous oxide
Cu(OAc) ₂	Copper acetate
DMSO	Dimethyl sulfoxide
DMF	Dimethylformamide
CH ₃ CN	Acetonitrile
THF	Tetrahydrofuran
equiv	Equivalent
HRMS	High resolution mass spectrometry
Hz	Hertz
J	Coupling constant
TMS-Cl	Trimethylsilyl chloride

List of Abbreviation

2. Synthesis of spherical Cu-MnO catalysts

Synthesis of spherical MnO₂:

Spherical MnO₂ synthesized according to our previews reported method.^{1,2}

Typical synthetic procedure: In a typical synthetic procedure, manganese acetate (2g, 1.01×10^{-2} mol) and oxalic acid (2g, 1.04×10^{-2} mol) was dissolved in deionised water to make the clear solution in stirring condition. Then an aqueous solution of ammonium carbonate (4g, 0.025mol) was added dropwise to a pre-mixed solution to make the total volume 40mL. After stirring, the resulting clear solution was transferred to 60 ml Teflon-lined stainless steel autoclave, sealed tightly, and heated at 150°C for 15h. After that, the autoclave was allowed to cool down and the resultant precipitates washed with deionised water and ethanol by centrifugation and dried at 70°C for an hours. Finally, the dried powder was calcined at 350°C for 6h under air atmosphere.

Synthesis of Cu-MnO catalysts:

Impregnation method has been used for the preparation of Cu impregnated MnO (Cu-MnO) by using Cu(OAc)₂ H₂O and MnO₂ followed by calcination under 5% H₂ and 95% N_2 condition.

Synthetic procedure: In stirring condition, 500 mg of MnO_2 and 67.5 mg (5 wt% with respect to MnO_2) Copper Acetate [Cu(OAc)₂ H₂O] were added in methanol solution followed by sonication. The resultant slurry was evaporated to dryness with continuous stirring (500 rpm) at 70°C under atmospheric pressure. The resultant dried powder was calcined at 350°C for 6 h under 5% H₂ and 95% N₂.

3. Typical procedure for preparation of alkynylphosphonates (I)

In a carousel reaction tube Cu-MnO catalyst (12 mg) was taken, terminal alkyne (0.25 mmol), dialkyl phosphate (0.5 mmol) and 1 mL DMSO were added over it. The reaction mixture was stirred at 100 °C for 1.5h under air atmosphere. After completion of the reaction, the crude reaction mixture was filtered and washed with ethyl acetate (25 mL). The organic layer was washed with water, and then water layer was re-extracted with ethyl acetate (2x 25 mL). The combined organic layer was washed with brine solution, dried over Na₂SO₄, and then concentrated under reduced pressure. The resulting residue was

purified by flash chromatography (ethyl acetate: hexane) to afford the desired alkynylphosphonates.

4. Typical procedure for preparation of ynamides (II)

In a carousel reaction tube Cu-MnO catalyst (12 mg) and Na₂CO₃ (53 mg, 0.5 mmol) were taken, the tube was then evacuated and refill with oxygen for three times. Next, the terminal alkyne (0.25 mmol), oxazolidin-2-one (0.5 mmol) and 1 mL Toluene were added over it via syringe. The reaction mixture was stirred at 100 °C for 2h under oxygen atmosphere. After completion of the reaction, the crude reaction mixture was filtered and washed with ethyl acetate (25 mL). The organic layer was washed with water and brine solution, dried over Na₂SO₄, and then concentrated under reduced pressure. The resulting residue was purified by flash chromatography (ethyl acetate: hexane) to afford the desired ynamides.

	H +	- HN	Conditions		N N
I	Entry Catalyst	Solvent	Base	T (°C)	Yield (%)
1	5 wt% Cu-MnO	toluene	Na ₂ CO ₃	100	98
2	5 wt% Cu-MnO	THF	Na ₂ CO ₃	100	trace
3	5 wt% Cu-MnO	DMSO	NaHCO ₃	100	trace
4	5 wt% Cu-MnO	Ph-Cl	Na ₂ CO ₃	100	92
5	5 wt% Cu-MnO	O-xylene	Na ₂ CO ₃	100	97
6	5 wt% Cu-MnO	H ₂ O	Na ₂ CO ₃	100	NR
7	5 wt% Cu-MnO	МеОН	Na ₂ CO ₃	100	NR

Table S1: Solvent screening for ynamide synthesis

Standard reaction conditions: 0.25 mmol phenyl acetylene, 2-Oxazolidone (2 equiv., 0.5 mmol), solvent 1 ml, catalyst 12 mg, 100°C, under O₂ atm., for 2h

5. Spectral characterization:

Diethyl (4-bromophenyl)ethynyl]phosphonate (3a):³ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3a product as a yellow oil, (74 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 4.27 – 4.18 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 134.08 (d, *J* = 1.8 Hz), 132.1, 125.6, 118.6 (d, *J* = 6.2 Hz), 97.8 (d, *J* = 52.6 Hz), 79.8 (d, *J* = 298.6 Hz), 63.49 (d, *J* = 5.5 Hz), 16.3 (d, *J* = 7.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.77; **IR** (neat): 3437, 2931, 2194, 1483, 1262, 1021, 977, 862, 684; **HRMS** (ESI+) calcd for C₁₂H₁₄BrO₃P [M+H]⁺ : 316.9942, found: 316.9951.

Diethyl (phenylethynyl)phosphonate (3b):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3b product as a yellow oil, (56 mg, 93%). ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 4.24-4.19 (m, 4H), 1.39 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 132.7, 130.8, 128.6, 119.6 (d, *J* = 5.5 Hz), 99.1 (d, *J* = 53.0 Hz), 78.5 (d, *J* = 300.3 Hz), 63.3 (d, *J* = 5.2 Hz), 16.2 (d, *J* = 7.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.48; IR (neat): 3482, 2985, 2194, 1439 1270, 1021, 977, 862, 764, 692; HRMS (ESI+) calcd for C₁₂H₁₅O₃P [M+H]⁺ : 239.0837, found: 239.0835.

Diethyl [(4-fluorophenyl)ethynyl]phosphonate (3c):³ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3c product as a yellow oil, (65 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, J = 8.4, 5.4 Hz, 2H), 7.11 – 7.05 (m, 2H), 4.28 – 4.19 (m, 4H), 1.41 (t, J = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 163.9 (d, $J_{C-F} = 253.8$ Hz), 136.1 (m, $J_{C-F} = 8.5$ Hz), 116.2 (d, $J_{C-F} = 22.1$ Hz), 115.8 (d, $J_{C-P} = 4.5$ Hz), 98.0 (d, $J_{C-P} = 53.3$ Hz), 78.4 (d, $J_{C-P} = 300.5$ Hz), 63.4 (d, $J_{C-P} = 5.5$ Hz), 16.2 (d, $J_{C-P} = 7.0$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.52; IR (neat): 3435, 2929, 2190, 1506, 1264, 1025, 801; HRMS (ESI+) calcd for C₁₂H₁₄FO₃P [M+Na]⁺ : 279.0562, found: 279.0569.

Diethyl (4-tolylethynyl)phosphonate (3d):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3d product as a pale yellow oil, (61 mg, 97%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 4.20 (m, 4H), 2.36 (s, 3H), 1.38 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 141.4, 132.7 (d, *J* = 2.0 Hz), 129.4, 116.5 (d, *J* = 5.7 Hz), 99.7 (d, *J* = 53.4 Hz), 77.8 (d, *J* = 300.5 Hz), 63.3 (d, *J* = 5.6 Hz), 21.8, 16.2 (d, *J* = 7.0 Hz); ³¹**P NMR** (243 MHz, CDCl₃) δ -5.06; **IR** (neat): 3481, 2994, 2189, 1514, 1262, 1028, 981, 866, 817,786, 610; **HRMS** (ESI+) calcd for C₁₃H₁₇O₃P [M+Na]⁺ : 275.0813, found: 275.0809.

Diethyl [(4-*tert*-butylphenyl)ethynyl]phosphonate (3e):³ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3e product as a yellow oil, (70 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.9 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 4.27 – 4.19 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 6H), 1.32 (s, 9H) ; ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 132.6, 125.7, 116.6 (d, *J* = 5.5 Hz), 99.7 (d, *J* = 53.4 Hz), 77.8 (d, *J* = 300.88 Hz), 63.3 (d, *J* = 5.0 Hz), 35.2, 31.2, 16.26 (d, *J* = 7.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.03; **IR** (neat): 3476, 2962, 2186, 1265, 1023, 976, 867, 836, 763, 569; **HRMS** (ESI+) calcd for C₁₆H₂₃O₃P [M+H]+ : 295.1483, found: 295.1489.

Diethyl [(4-methoxyphenyl)ethynyl]phosphonate (3f):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3f product as a yellow oil, (52 mg, 78%). ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 4.24 – 4.17 (m, 4H), 3.82 (s, 3H), 1.38 (t, J = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 161.5, 134.5, 114.3, 111.5 (d, J = 5.8 Hz), 99.8 (d, J = 53.7 Hz), 77.3 (d, J = 303.01 Hz), 63.2 (d, J = 5.6 Hz), 55.5, 16.21 (d, J = 7.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.47; **IR** (neat): 3471, 2985, 2189, 1604, 1511, 1262, 1028, 981, 859, 793, 616.

Diethyl [(4-N, N dimethylaminophenyl)ethynyl]phosphonate (3g):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3g product as a maroon oil, (58 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.9 Hz, 2H), 6.59 (d, *J* = 9.0 Hz, 2H), 4.24 – 4.14 (m, 4H), 2.99 (s, 6H), 1.37 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 134.2, 111.5, 105.3 (d, *J* = 6.0 Hz), 102.3 (d, *J* = 54.5 Hz), 76.4 (d, *J* = 310.6 Hz), 63.1 (d, *J* = 5.2 Hz), 40.1, 16.3 (d, *J* = 7.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -3.86; **IR** (neat): 3478, 2984, 2930, 2171, 1605, 1529, 1368, 1266, 1021, 974, 864, 766, 599; **HRMS** (ESI+) calcd for C₁₂H₂₀NO₃P [M+H]⁺ : 282.1268, found: 282.1263.

Diethyl [(4-Cyanophenyl)ethynyl]phosphonate (3h):⁵ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3h product as a yellow oil, (58 mg, 88%). ¹H NMR (600 MHz, CDCl₃)) δ 7.69-7.66 (m, 4H), 4.27-4.22 (m, 4H), 1.42 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃)) δ 133.16 (d, *J* = 1.8 Hz), 132.31, 124.40 (d, *J* = 5.5 Hz), 117.84, 114.20, 95.98 (d, *J* = 51.4 Hz), 82.56 (d, *J* = 295.3 Hz), 63.64 (d, *J* = 5.2 Hz), 16.22 (d, *J* = 6.9 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -6.63; **IR** (neat): 3435, 2929, 2191, 1261, 1026, 860, 561; **HRMS** (ESI+) calcd for C₁₃H₁₄NO₃P [M+H]⁺ : 264.0789, found: 264.0783.

Diethyl [(2-trifluoromethylbenzene)ethynyl]phosphonate (3i):⁶ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3i product as a yellow oil, (66 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 7.73 (dd, *J* = 14.4, 7.1 Hz, 2H), 7.61 – 7.53 (m, 2H), 4.29 – 4.19 (m, 4H), 1.41 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 135.2, 131.9, 130.6, 126.3 (q, *J*_{C-F} = 4.7 Hz), 125.0 (q, *J*_{C-F} = 274.5 Hz), 117.9, 94.2 (d, *J*_{C-P} = 51.8 Hz), 84.0 (d, *J*_{C-P} = 292.5 Hz), 63.7 (d, *J*_{C-P} = 5.4 Hz), 16.2 (d, *J*_{C-P} = 7.1 Hz); ³¹P NMR (243 CDCl₃)MHz,) δ -6.46; IR (neat): 3432, 2928, 2193, 1321, 1267, 1135, 1026, 865, 775, 665.

Diethyl [(2-chlorophenyl)ethynyl]phosphonate (3j): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3j product as a yellow oil, (64 mg, 94%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.60 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.40-7.37 (m, 1H), 7.30 – 7.27 (m, 1H), 4.26 (m, 4H), 1.42 (t, *J* = 7.2 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 137.1, 134.5, 131.7, 129.7, 126.8, 120.1 (d, *J* = 5.9 Hz), 95.2 (d, *J* = 52.2 Hz), 83.4 (d, *J* = 295.0 Hz), 63.6 (d, *J* = 5.4 Hz), 16.2 (d, *J* = 7.0 Hz); ³¹**P NMR** (243 MHz, CDCl₃) δ -6.10; **IR** (neat): 3435, 2985, 2192, 1264, 1026, 978, 862, 760; **HRMS** (ESI+) calcd for C₁₂H₁₄ClO₃P [M+Na]+ : 295.0267, found: 295.0259.

Diethyl [(2-methoxyphenyl)ethynyl]phosphonate (3k):⁷ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3k product as a yellow oil, (54 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.46 (m, 1H), 7.40-7.37 (m, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.22 (m, 4H), 3.86 (s, 3H), 1.39 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 161.7, 134.6 (d, *J* = 2.2 Hz), 132.4, 120.6, 110.9, 109.1 (d, *J* = 5.1 Hz), 96.5 (d, *J* = 53.4 Hz), 82.2 (d, *J* = 300.4 Hz), 63.3 (d, *J* = 5.4 Hz), 55.9 (s), 16.2 (d, *J* = 6.9 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.03; IR (neat): 3466, 2930, 2184, 1260, 1025, 976, 868, 784, 755.

Diethyl [(3-methylphenyl)ethynyl]phosphonate (3l):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3l product as a yellow oil, (59 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (s, 1H), 7.35 (m, 1H), 7.24 (m, 2H), 4.27 – 4.14 (m, 4H), 2.33 (s, 3H), 1.39 (t, J = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 138.5, 133.2, 131.7, 129.8, 128.5, 119.4 (d, *J* = 5.4 Hz), 99.5 (d, *J* = 52.9 Hz), 78.05 (d, *J* = 299.03 Hz) 63.3 (d, *J* = 5.6 Hz), 21.2, 16.2 (d, *J* = 7.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.26; **IR** (neat): 3483, 2983, 2178, 1260, 1025, 976, 793, 654; **HRMS** (ESI+) calcd for C₁₃H₁₇O₃P [M+H]+ : 253.1003, found: 253.0989.

Diethyl [(6-methoxynaphthalen-2-yl)ethynyl]phosphonate (3m):⁸ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3m product as a colorless oil, (49 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (s, 1H), 7.73 – 7.66 (m, 2H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.18 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.11 (m, 1H), 4.24 (m, 4H), 3.92 (s, 3H), 1.41 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 135.5, 133.7, 129.8, 128.7, 128.1, 127.2, 120.10, 114.2 (d, *J* = 5.6 Hz), 105.9, 100.1 (d, *J* = 52.7 Hz), 77.9 (d, *J* = 300.9 Hz), 63.3 (d, *J* = 5.2 Hz), 55.5, 16.3 (d, *J* = 7.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -5.00; **IR** (neat): 3469, 2930, 2181, 1625, 1482, 1390, 1260, 1167, 1024, 973, 782; **HRMS** (ESI+) calcd for C₁₇H₁₉O₄P [M+Na]⁺ : 341.0919, found: 341.0917.

Diethyl (pyridine-2-ylethynyl)phosphonate (3n): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:1.5) to afford 3n product as a Yellow oil, (22 mg, 38%). ¹H NMR (600 MHz, CDCl₃) δ 8.66 (m, 1H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.37 (dd, *J* = 7.0, 5.5 Hz, 1H), 4.26 (m, 4H), 1.41 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 136.5, 128.7, 124.9, 96.8 (d, *J* = 50.7 Hz), 77.8 (d, *J* = 291.6 Hz), 63.7 (d, *J* = 5.6 Hz), 16.2 (d, *J* = 7.1 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -6.58; **IR** (neat): 3436, 2929, 2197, 1462, 1262, 1023, 870, 781; **HRMS** (ESI+) calcd for C₁₁H₁₄NO₃P [M+Na]⁺ : 262.0609, found: 262.0618.

Diethyl (cyclohexen-1-ylethynyl)phosphonate (30):⁴ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 30 product as a pale yellow oil, (54 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 6.44 (s, 1H), 4.19 – 4.12 (m, 4H), 2.16-2.14 (m, 4H), 1.66 – 1.59 (m, 4H), 1.37 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 118.5 (d, *J* = 5.7 Hz), 101.5 (d, *J* = 52.4 Hz), 75.6 (d, *J* = 302.4 Hz), 63.1 (d, *J* = 5.5 Hz), 28.0, 25.9, 21.9, 21.1, 16.2 (d, *J* = 6.9 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -4.58; **IR** (neat): 3433, 2928, 2176, 1262, 1025, 971, 807.

3-(diethoxyphosphoryl)prop-2-yn-1-yl benzoate (3p): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3p product as a colorless oil, (67 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 5.00 (d, *J* = 4.1 Hz, 2H), 4.24 – 4.09 (m, 4H), 1.35 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 133.7, 129.9, 128.9, 128.6, 93.9 (d, *J* = 50.9 Hz), 76.8 (d, *J* = 293.4 Hz), 63.6 (d, *J* = 5.6 Hz), 52.0 (d, *J* = 4.3 Hz), 16.1 (d, *J* = 7.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -7.30; **IR** (neat): 3436, 2984, 2930, 2218, 1730, 1602, 1453, 1265, 1166, 1102, 1030, 806, 715, 648; **HRMS** (ESI+) calcd for C₁₄H₁₇O₅P [M+H]⁺ : 297.0892, found: 297.0884.

Diethyl hex-1-yn-1-ylphosphonate (3r): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:1) to afford 3r product as a colorless oil, (52 mg, 95%). ¹H NMR (600 MHz,) δ 4.17 – 4.10 (m, 4H), 2.35-2.32 (m, 2H), 1.57 – 1.54 (m, 2H), 1.44-1.40 (m, 2H), 1.35 (t, *J* = 7.0 Hz, 6H), 0.91 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz,) δ 103.4 (d, *J* = 53.1 Hz), 70.3 (d, *J* = 303.9 Hz), 63.1 (d, *J* = 5.1 Hz), 29.5, 21.9 (d, *J* = 10.1 Hz), 19.0 (d, *J* = 4.2 Hz), 16.1 (d, *J* = 7.1 Hz), 13.5; ³¹P NMR (243 MHz, CDCl₃) δ -5.45; **IR** (neat): 2934, 2205, 1727, 1459, 1393, 1256, 1027, 981; **HRMS** (ESI+) calcd for C₁₀H₁₉O₃P [M+H]⁺ : 219.1150, found: 219.1149.

Diethyl dec-1-yn-1-ylphosphonate (3s): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:1) to afford 3s product as a yellow oil, (64 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 4.16 – 4.09 (m, 4H), 2.33-2.30 (m, 2H), 1.58 – 1.54 (m, 2H), 1.38-1.37 (m, 2H), 1.34 (t, *J* = 7.0 Hz, 6H), 1.29-1.25 (m, 8H), 0.86 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 103.5 (d, *J* = 53.2 Hz), 70.3 (d, *J* = 303.7 Hz), 63.0 (d, *J* = 5.5 Hz), 31.8, 29.1, 29.0, 28.8, 27.5, 22.7, 19.3 (d, *J* = 4.4 Hz), 16.1 (d, *J* = 6.8 Hz), 14.1; ³¹P NMR (243 MHz,) δ -5.48; **IR** (neat): 2928, 2206, 1463, 1258, 1030, 976, 733; **HRMS** (ESI+) calcd for C₁₄H₂₈O₃P [M+H]⁺: 275.1776, found: 275.1788.

Dimethyl (phenylethynyl)phosphonate (3t):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 3t product as a colorless oil, (47 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 3.88 (s, 3H), 3.86 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 132.8, 130.9, 128.7, 119.4 (d, *J* = 5.6 Hz), 100.0 (d, *J* = 53.3 Hz), 77.0 (d, *J* = 302.3 Hz), 53.5 (d, *J* = 5.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -2.09; **IR** (neat): 3480, 2955, 2188, 1448, 1269, 1036, 862, 762, 690, 653.

Diisopropyl [(4-bromophenyl)ethynyl]phosphonate (4a):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4a product as a colorless oil, (80 mg, 93%). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 4.84 – 4.75 (m, 2H), 1.39 (d, *J* = 3.1 Hz, 6H), 1.38 (d, *J* = 2.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 133.9, 132.1, 125.4, 118.9, 96.9 (d, *J* = 52.4 Hz), 81.3 (d, *J* = 297.7 Hz), 72.6 (d, *J* = 5.6 Hz), 24.1 (d, *J* = 4.6 Hz), 23.8 (d, *J* = 4.5 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -8.26; **IR** (neat): 3436, 2925, 2189, 1466, 1380, 1262, 1005, 889, 682, 535; **HRMS** (ESI+) calcd for C₁₄H₁₈BrO₃P [M+H]⁺ : 345.0255, found: 345.0266.

Diisopropyl (phenylethynyl)phosphonate (4b):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4b product as a colorless oil, (61 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 2H), 4.88 – 4.77 (m, 2H), 1.41 (dd, *J* = 5.8, 3.5 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 132.6, 130.6, 128.5 (d, *J* = 24.2 Hz), 119.9 (d, *J* = 5.0 Hz), 98.2 (d, *J* = 53.0 Hz), 78.4 (d, *J* = 295.8 Hz), 72.5 (d, *J* = 5.5 Hz), 24.0 (d, *J* = 4.3 Hz), 23.7 (d, *J* = 4.9 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -7.92; IR (neat): 3462, 2981, 2188, 1382, 1262, 1005, 889, 852, 760, 690, 656, 513; HRMS (ESI+) calcd for C₁₄H₁₉O₃P [M+H]⁺ : 267.1152, found: 267.1151.

Diisopropyl [(4-fluorophenyl)ethynyl]phosphonate (4c):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4c product as a colorless oil, (64 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 7.53 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.05 (t, *J* = 8.5 Hz, 2H), 4.83 – 4.76 (m, 2H), 1.40-1.38 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 163.86 (d, *J*_{C-F} = 253.2 Hz), 134.81 (d, *J*_{C-F} = 8.0 Hz), 116.16 (d, *J*_{C-F} = 22.7 Hz), 97.02 (d, *J*_{C-P} = 53.0 Hz), 79.96 (d, *J*_{C-P} = 298.3 Hz), 72.47 (d, *J*_{C-P} = 5.6 Hz), 24.00 (d, *J*_{C-P} = 4.3 Hz), 23.73 (d, *J*_{C-P} = 4.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -8.06; **IR** (neat): 3435, 2924, 2189, 1628, 1462, 1005, 798.

Diisopropyl (4-tolylethynyl)phosphonate (4d):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4d product as a colorless oil, (61 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 4.83 – 4.75 (m, 2H), 2.36 (s, 3H), 1.38 (dd, *J* = 6.3, 2.9 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 141.2, 132.5, 129.4, 116.8 (d, *J* = 5.7 Hz), 98.7 (d, *J* = 53.0 Hz), 79.3 (d, *J* = 300.0 Hz), 72.3 (d, *J* = 5.6 Hz), 24.0 (d, *J* = 4.3 Hz), 23.7 (d, *J* = 5.2 Hz), 21.75; ³¹P NMR (243 MHz, CDCl₃) δ -7.64; **IR** (neat) : 3433, 2926, 2338, 2186, 1648, 1463, 1263, 1165, 1018, 817 647; **HRMS** (ESI+) calcd for C₁₅H₂₁O₃P [M+Na]⁺ : 281.1314, found: 281.1304.

Diisopropyl [(4-*tert***-butylphenyl)ethynyl]phosphonate (4e):**³ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4e product as a colorless oil, (76 mg, 94%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 4.86 – 4.76 (m, 2H), 1.43 – 1.38 (m, 12H), 1.31 (s, 9H); ¹³**C NMR** (151 MHz, CDCl₃) δ 154.2, 132.4, 125.7, 116.9 (d, *J* = 5.7 Hz), 98.7 (d, *J* = 53.1 Hz), 79.3 (d, *J* = 300.1 Hz), 72.3 (d, *J* = 5.6 Hz), 35.1, 31.1, 24.0 (d, *J* = 4.2 Hz), 23.7 (d, *J* = 4.5 Hz); ³¹**P NMR** (243 MHz, CDCl₃) δ -7.65; **IR** (neat): 3435, 2962, 2187, 1467, 1382, 1264, 1105, 1002, 889, 834, 773; **HRMS** (ESI+) calcd for C₁₈H₂₇O₃**P** [M+Na]+ : 345.1596, found: 345.1607.

Diisopropyl [(4-methoxyphenyl)ethynyl]phosphonate (4f):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4f product as a colorless oil, (60 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 4.83 – 4.74 (m, 2H), 3.81 (s, 3H), 1.38 (dd, *J* = 6.0, 2.9 Hz, 12H) ; ¹³C NMR (151 MHz, CDCl₃) δ 161.4, 134.4, 114.3, 111.8 (d, J = 5.6 Hz), 98.9 (d, J = 53.6 Hz), 78.8 (d, J = 301.1 Hz), 72.2 (d, J = 5.5 Hz), 55.5, 24.0 (d, J = 4.4 Hz), 23.7 (d, J = 5.1 Hz).³¹P NMR (243 MHz, CDCl₃) δ -7.33; ; **IR** (neat): 3432, 2928, 2182, 1605, 1258, 1021, 784.

Diisopropyl [(4-N,N dimethylaminophenyl)ethynyl]phosphonate (4g): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4g product as a colorless oil, (61 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 8.7 Hz, 2H), 6.61 (d, *J* = 8.3 Hz, 2H), 4.79 (m, 2H), 3.01 (s, 6H), 1.41 – 1.38 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 151.5, 134.1, 111.5, 105.8 (d, *J* = 5.5 Hz), 101.2 (d, *J* = 54.2 Hz), 77.9 (d, *J* = 313.8 Hz), 72.0 (d, *J* = 5.5 Hz), 40.1, 24.1 (d, *J* = 4.3 Hz), 23.8 (d, *J* = 4.8 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -6.43; **IR** (neat): 3433, 2979, 2929, 2172, 1606, 1527, 1373, 1263, 1008, 889, 858, 820, 773; **HRMS** (ESI+) calcd for C₁₆H₂₄NO₃P [M+H]⁺ : 310.1580, found: 310.1580.

Diisopropyl [(4-Cyanophenyl)ethynyl]phosphonate (4h):¹⁰ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4h product as a colorless oil, (52 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 7.69-7.64 (m, 4H), 4.86-4.80 (m, 2H), 1.42-1.41 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 133.09 (d, *J* = 1.9 Hz), 132.34, 124.74 (d, *J* = 5.6 Hz), 117.93, 114.08, 95.15 (d, *J* = 51.4 Hz), 84.43 (d, *J* = 378.2 Hz), 72.94 (d, *J* = 5.3 Hz), 23.95 (d, *J* = 4.4 Hz), 23.79 (d, *J* = 4.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -9.18; **IR** (neat): 3433, 2981, 2929, 2184, 1264, 1026, 888, 863. 755; **HRMS** (ESI+) calcd for C₁₅H₁₈FO₃P [M+Na]+ : 314.0922, found: 314.0912.

Diisopropyl [(2-trifluoromethylbenzene)ethynyl]phosphonate (4i): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4i product as a colorless oil, (72 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.61 – 7.52 (m, 2H), 4.90 – 4.74 (m, 2H), 1.41 (d, *J* = 6.0 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 135.2 (d, *J*_{C-F} = 2.3 Hz), 131.8, 130.3, 126.2 (q, *J*_{C-F} = 4.4 Hz), 123.1 (q, *J*_{C-F} = 275.4 Hz), 117.8, 93.1 (d, *J*_{C-P} = 51.8 Hz), 85.3 (d, *J*_{C-P} = 291.4 Hz), 72.8 (d, *J*_{C-P} = 5.8 Hz), 23.9 (d, *J*_{C-P} = 4.3 Hz), 24.0 (d, *J*_{C-P} = 5.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -9.32; **IR** (neat): 3432, 2984, 2928, 2194, 1318, 1265, 1137, 1002, 890, 861, 772, 666; **HRMS** (ESI+) calcd for C₁₅H₁₈F₃O₃P [M+H]⁺ : 335.0954, found: 335.0965.

Diisopropyl [(2-chlorophenyl)ethynyl]phosphonate (4j):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4j product as a colorless oil, (64 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.38 (t, *J* = 8.4 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 4.84 (m, 2H), 1.42 (dd, *J* = 6.2, 4.3 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 137.1, 134.5 (d, *J* = 2.0 Hz), 131.6, 129.7, 126.8, 120.3 (d, *J* = 5.6 Hz), 94.4 (d, *J* = 52.5 Hz), 84.9 (d, *J* = 293.6 Hz), 72.8 (d, *J* = 5.6 Hz), 24.1 (d, *J* = 4.3 Hz), 23.8 (d, *J* = 4.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -8.76; **IR** (neat): 3433, 2980, 2930, 2192, 1468, 1264, 1005, 760.

Diisopropyl [(2-methoxyphenyl)ethynyl]phosphonate (**4k**):¹¹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4k product as a yellow solid, (59 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 1H), 7.40 – 7.35 (m, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 4.85 – 4.77 (m, 2H), 3.85 (s, 3H), 1.41 – 1.38 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 161.7, 134.4, 132.2, 120.6, 110.9, 109.4 (d, *J* = 5.8 Hz), 95.6 (d, *J* = 53.9 Hz), 84.6 (d, *J* = 295.0 Hz), 72.4 (d, *J* = 5.4 Hz), 55.8, 24.1 (d, *J* = 4.4 Hz), 23.7 (d, *J* = 5.2 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -7.67; **IR** (neat): 3440, 2928, 2186, 1597, 1464, 1262, 1016, 890, 716, 650; **HRMS** (ESI+) calcd for C₁₅H₂₁O₄P [M+H]⁺: 297.1263, found: 297.1250.

Diisopropyl [(3-methylphenyl)ethynyl]phosphonate (4l):⁶ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4l product as a colorless oil, (64 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.31 (m, 2H), 7.22 (d, *J* = 4.3 Hz, 2H), 4.83 – 4.74 (m, 2H), 2.32 (s, 3H), 1.38 (dd, *J* = 5.9, 3.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 138.5, 133.0 (d, *J* = 1.8 Hz), 131.5, 129.7, 128.5, 119.7 (d, *J* = 5.4 Hz), 98.5 (d, *J* = 52.9 Hz), 79.6 (d, *J* = 298.4 Hz), 72.4 (d, *J* = 5.5 Hz), 24.0 (d, *J* = 4.3 Hz), 23.7 (d, *J* = 4.6 Hz), 21.2; ³¹P NMR (243 MHz, CDCl₃) δ -7.84; **IR** (neat): 3433, 2982, 2929, 2178, 1384, 1265, 1004, 786, 656.

Diisopropyl [(6-methoxynaphthalen-2-yl)ethynyl]phosphonate (4m): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4m product as a colorless oil, (54 mg, 63%). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.72-7.68 (m, 2H), 7.50 – 7.48 (m, 1H), 7.17 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.10 (s, 1H), 4.88 – 4.78 (m, 2H), 3.91 (s, 3H), 1.42 (t, *J* = 6.2 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 135.4, 133.5 (d, *J* = 2.0 Hz), 129.8, 128.7, 128.1, 127.2, 120.1, 114.5 (d, *J* = 5.2 Hz), 106.0, 99.3 (d, *J* = 52.9 Hz), 79.5 (d, *J* = 299.7 Hz), 72.4 (d, *J* = 5.6 Hz), 55.5, 24.1 (d, *J* = 4.5 Hz), 23.8 (d, *J* = 5.1 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -7.61; IR (neat): 3465, 2980, 2932, 2184, 1628, 1465, 1388, 1260, 999, 780, 640; HRMS (ESI+) calcd for C₁₉H₂₃O₄P [M+H]⁺: 347.1412, found: 347.1392.

Diisopropyl (**pyridine-2-ylethynyl**)**phosphonate** (**4n**): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4n product as a colorless oil, (25 mg, 37%). ¹**H NMR** (600 MHz, CDCl₃) δ 8.63 (d, *J* = 4.7 Hz, 1H), 7.72-7.69 (m, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.34 (dd, *J* = 7.5, 5.0 Hz, 1H), 4.82 (m, 2H), 1.40 (t, *J* = 5.7 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 136.4, 128.6, 124.7, 95.9 (d, J = 50.6 Hz), 79.3 (d, J = 291.8 Hz), 72.9 (d, J = 5.6 Hz), 24.0 (d, J = 4.6 Hz), 23.7 (d,

J = 4.7 Hz). ³¹**P** NMR (243 MHz, CDCl₃) δ -9.13; **IR** (neat) : 3432, 2929, 2345, 2195, 1460, 1262, 1014, 785; **HRMS** (ESI+) calcd for C₁₃H₁₈NO₃P [M+H]⁺ : 268.1110, found: 268.1097.

Diisopropyl (cyclohexen-1-ylethynyl)phosphonate (40):¹² Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 40 product as a colorless oil, (61 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 6.40 (s, 1H), 4.79 – 4.69 (m, 2H), 2.14 (d, *J* = 5.0 Hz, 4H), 1.66 – 1.62 (m, 2H), 1.60 (m, 2H), 1.37 (d, *J* = 6.1 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 141.4 (d, *J* = 3.1 Hz), 118.7 (d, *J* = 5.6 Hz), 100.6 (d, J = 52.8 Hz), 77.2 (d, *J* = 301.5 Hz), 72.1 (d, *J* = 5.3 Hz), 28.0, 25.9, 24.0 (d, *J* = 4.5 Hz), 23.7 (d, *J* = 5.1 Hz), 21.9, 21.1; ³¹P NMR (243 MHz, CDCl₃) δ -7.10; **IR** (neat): 3434, 2929, 2341, 1651, 1265, 1166, 1026, 864, 815, 656.

3-(diisopropylphosphoryl)prop-2-yn-1-yl benzoate (4p): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4p product as a colorless oil, (75 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 7.4 Hz, 2H), 7.57 (t, *J* = 6.9 Hz, 1H), 7.43 (t, *J* = 7.1 Hz, 2H), 4.98 (s, 2H), 4.74 (m, 2H), 1.34 (d, *J* = 5.7 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 133.7, 129.9, 129.0, 128.6, 93.0 (d, *J* = 51.2 Hz), 78.3 (d, J = 292.9 Hz), 72.8 (d, *J* = 5.6 Hz), 52.1 (d, *J* = 4.3 Hz), 23.9 (d, *J* = 4.3 Hz), 23.6 (d, *J* = 4.5 Hz); **IR** (neat) : 3448, 2983, 2218, 1730, 1452, 1376, 1262, 1101, 1003, 774, 715, 648; **HRMS** (ESI+) calcd for C₁₆H₂₁O₅P [M+K]⁺ : 363.0764, found: 363.0766.

3-(dibutylphosphoryl)prop-2-yn-1-yl benzoate (4q): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4q product as a colorless oil, (78 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 4.99 (s, 2H), 4.09 (m, 4H), 1.68 – 1.65 (m, 4H), 1.41-1.37 (m, 4H), 0.91-0.88 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 165.4,

133.7, 129.9, 128.6, 93.9 (d, J = 50.8 Hz), 76.7 (d, J = 293.8 Hz), 67.3 (d, J = 5.8 Hz), 52.0 (d, J = 4.3 Hz), 32.2 (d, J = 7.1 Hz), 18.7, 13.6; **IR** (neat): 3446, 2962, 2220, 1730, 1554, 1263, 1021, 715; **HRMS** (ESI+) calcd for C₁₈H₂₅O₅P [M+H]⁺ : 353.1518, found: 353.1512.

Diisopropyl hex-1-yn-1-ylphosphonate (4r): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:1) to afford 4r product as a colorless oil, (58 mg, 94%). ¹**H NMR** (600 MHz, CDCl₃) δ 4.75-4.70 (m, 2H), 2.35-2.32 (m, 2H), 1.59 – 1.53 (m, 2H), 1.45-1.41 (m, 2H), 1.39 – 1.33 (m, 12H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 102.3 (d, *J* = 53.2 Hz), 72.0 (d, *J* = 5.4 Hz), 71.8 (d, *J* = 302.8 Hz), 29.5, 23.9 (d, *J* = 4.6 Hz), 23.6 (d, *J* = 4.5 Hz), 21.9 (s), 18.9 (d, *J* = 4.5 Hz), 13.5; ³¹**P NMR** (243 MHz, CDCl₃) δ -7.98; **IR** (neat): 2982, 2937, 2206, 1466, 1382, 1256, 1108, 1001, 889, 775; **HRMS** (ESI+) calcd for C₁₂H₂₃O₃**P** [M+Na]⁺ : 269.1283, found: 269.1301.

Diisopropyl dec-1-yn-1-ylphosphonate (4s): Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:1) to afford 4s product as a yellow oil, (69 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 4.75 – 4.62 (m, 2H), 2.30-2.27 (m, 2H), 1.56-1.52 (m, 2H), 1.39 – 1.34 (m, 2H), 1.32 (d, *J* = 6.2 Hz, 12H), 1.26 – 1.21 (m, 8H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 102.3 (d, *J* = 53.3 Hz), 72.0 (d, *J* = 5.2 Hz), 71.8 (d, *J* = 302.8 Hz), 31.8, 29.1, 29.0, 28.8, 27.5, 23.9 (d, *J* = 4.3 Hz), 23.6 (d, *J* = 4.5 Hz), 22.7, 19.2 (d, *J* = 4.3 Hz), 14.1; ³¹P NMR (243 MHz,) δ -8.00; **IR** (neat): 2929, 2206, 1729, 1466, 1382, 1257, 1106, 996, 732; **HRMS** (ESI+) calcd for C₁₆H₃₁O₃P [M+K]⁺ : 341.1648, found: 341.1655.

Dibutyl (phenylethynyl)phosphonate (4t):⁹ Prepared according to typical procedure I. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 4t product as a colorless oil, (68 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.4 Hz, 2H), 7.46

(t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.8 Hz, 2H), 4.16 (m, 4H), 1.76 – 1.71 (m, 4H), 1.46 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 132.7 (d, J = 2.0 Hz), 130.7, 128.6, 119.7 (d, J = 5.4 Hz), 99.1 (d, J = 52.5 Hz), 78.4 (d, J = 299.6 Hz), 67.0 (d, J = 5.8 Hz), 32.3 (d, J = 7.1 Hz), 18.8, 13.6; ³¹P NMR (243 MHz, CDCl₃) δ -4.97; **IR** (neat): 3433, 2933, 2188, 1466, 1269, 1023, 857, 760, 689.

3-(phenylethynyl)oxazolidin-2-one (**5a**):¹³ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5a product as a white solid, (44 mg, 95%), ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.30 (m, 3H), 4.51 – 4.44 (m, 2H), 4.00 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 131.7, 128.4, 128.3, 122.3, 79.1, 71.3, 63.2, 47.1; IR (KBr): 2934, 2264, 1757, 1423, 1218, 1091, 748, 690; HRMS (ESI+) calcd for C₁₁H₉NO₂ [M+H]⁺ : 188.0711, found: 188.0701.

3-(p-tolylethynyl)oxazolidin-2-one (**5b**):¹³ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5b product as a white solid, solid (46 mg, 91%), ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 2H), 4.48 (t, *J* = 7.9 Hz, 2H), 4.04 – 3.97 (m, 2H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 138.5, 131.8, 129.2, 119.1, 78.4, 71.4, 63.1, 47.2, 21.6; **IR** (KBr): 2954, 2922, 1706, 1601, 1428, 1316, 1274, 1118, 1054, 972, 763.

3-(4-methoxyphenylethynyl)oxazolidin-2-one (5c):¹³ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5c product as a white solid, (50 mg, 93%), ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 6.86 – 6.79 (m, 2H), 4.46 (m, 2H), 4.01 – 3.94 (m, 2H), 3.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 156.2, 133.6, 114.0, 77.7, 71.0, 63.1, 55.4, 47.2; **IR** (KBr)f: 2959, 2920,

2266, 1746, 1606, 1423, 1253, 1217, 1089, 1025, 838; **HRMS** (ESI+) calcd for C₁₂H₁₁NO₃ [M+H]⁺ : 218.0817, found: 218.0817.

3-(4-N,N-dimethylaminophenylethynyl)oxazolidin-2-one (**5d**): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5d product as a white solid, (47 mg, 82%), ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 4.49 – 4.42 (m, 2H), 4.01 – 3.94 (m, 2H), 2.97 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 150.4, 133.5, 111.8, 108.6, 72.02, 63.0, 47.4, 40.3; **IR** (KBr) : 2919, 2257, 1745, 1612, 1424, 1224, 1085, 1028, 816; **HRMS** (ESI+) calcd for C₁₃H₁₄N₂O₂ [M+H]⁺ : 231.1134, found: 231.1138.

3-(4-*tert***-butylphenylethynyl)oxazolidin-2-one** (**5e**):¹⁴ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5e product as a white solid, (55 mg, 90%), ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.48 (t, *J* = 7.8 Hz, 2H), 4.03 – 3.97 (m, 2H), 1.30 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 156.1, 151.6, 131.5, 125.4, 119.1, 78.4, 71.3, 63.1, 60.5, 47.2, 34.9, 31.3; **IR** (KBr) : 2959, 2925, 2260, 1766, 1428, 1218, 1168, 1086, 1031, 837, 749.

3-(4-bromophenylethynyl)oxazolidin-2-one (**5f**):¹⁵ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5f product as a white solid, (58 mg, 88%) ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.32 – 7.28 (m, 2H), 4.54 – 4.46 (m, 2H), 4.04 – 3.99 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 155.9, 133.1, 131.7, 122.5, 121.3, 80.1, 70.5, 63.2, 47.1, 29.8; **IR** (KBr) : 2925, 2266, 1753, 1639, 1423, 1216, 1163, 1030, 826, 745; **HRMS** (ESI+) calcd for C₁₁H₈BrNO₂ [M+H]⁺ : 265.9817, found: 265.9816.

3-(4-fluorophenylethynyl)oxazolidin-2-one (**5g**):¹⁵ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5g product as a white solid, (46 mg, 90%) ¹**H NMR** (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 4.43-4.39 (m, 2H), 3.94-3.91 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.5 (d, *J* = 249.5 Hz), 156.0, 133.7 (d, *J* = 8.2 Hz), 118.2, 115.6 (d, *J* = 22.1 Hz), 78.7, 70.2, 63.2, 47.0; **IR** (KBr): 2922, 2257, 1748, 1639, 1425, 1213, 1168, 1032, 829, 744.

3-(4-cyanophenylethynyl)oxazolidin-2-one (**5h**):¹⁶ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5h product as a colourless oil, (43 mg, 81%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 4.55 – 4.50 (m, 2H), 4.06 – 4.02 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 155.9, 132.1, 131.5, 127.5, 118.6, 111.3, 84.5, 70.6, 63.3, 46.9, 31.0; **IR** (neat) : 2954, 2928, 2187, 1776, 1445, 1268, 1038, 862, 762.

4-(chloromethyl)-3-(phenylethynyl)oxazolidin-2-one (5i): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5i product as a white solid, (57 mg, 96%) ¹**H** NMR (500 MHz, CDCl₃) δ 7.45-7.43 (m, 2H), 7.36 – 7.28 (m, 3H), 4.91-4.86 (m, 1H), 4.10 (t, *J* = 9.0 Hz, 1H), 3.92-3.89 (m, 1H), 3.75 (d, *J* = 5.0 Hz, 2H); ¹³**C** NMR (126 MHz, CDCl₃) δ 154.6, 131.5, 128.2, 121.8, 78.2, 72.6, 71.3, 49.6, 44.0, 30.8, 29.5; **IR** (KBr) : 2921, 2263, 1760, 1418, 1213, 1167, 1045, 757; **HRMS** (ESI+) calcd for C₁₂H₁₀ClNO₂ [M+H]+ : 236.0478, found: 236.0483.

4-(chloromethyl)-3-(p-tolylethynyl)oxazolidin-2-one (5j): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5j product as a solid (57 mg, 92%) ¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.89-4.84 (m, 1H), 4.08 (t, *J* = 9.0 Hz, 1H), 3.89 (q, *J* = 9.2, 5.8 Hz, 1H), 3.74 (d, *J* = 5.0 Hz, 2H), 2.34 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 154.9, 138.7, 131.7, 129.2, 118.8, 77.8, 72.8, 71.4, 49.7, 44.3, 21.5; **IR** (KBr): 2916, 2247, 1771, 1424, 1212, 1044, 821, 744; **HRMS** (ESI+) calcd for C₁₃H₁₂ClNO₂ [M+H]⁺: 250.0635, found: 250.0638.

4-(chloromethyl)-3-(4-methoxyphenylethynyl)oxazolidin-2-one (5k): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5k product as a solid (56 mg, 85%) ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.9 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 4.84 – 4.76 (m, 1H), 3.99 (t, *J* = 9.0 Hz, 1H), 3.79 (q, *J* = 9.2, 5.8 Hz, 1H), 3.72 (s, 3H), 3.66 (t, *J* = 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 155.0, 133.6, 114.0, 72.7, 71.1, 55.3, 49.7, 44.4; **IR** (KBr): 2933, 2257, 1763, 1604, 1422, 1246, 1097, 1044, 832, 743; **HRMS** (ESI+) calcd for C₁₃H₁₂ClNO₃ [M+H]+ : 266.0584, found: 266.0564.

4-(chloromethyl)-3-(4-N,N-dimethylaminophenylethynyl)oxazolidin-2-one (5l): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5l product as a white solid (57 mg, 82%), ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 4.77 (m, 1H), 3.99 (t, J = 9.0 Hz, 1H), 3.79 (q, J = 9.2, 5.9 Hz, 1H), 3.65 (d, J = 5.2 Hz, 2H), 2.90 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 156.0, 150.4, 140.5, 124.5, 115.2, 112.2, 107.6, 70.5, 47.4, 46.4, 40.4; **IR** (KBr) : 2929, 2251, 1730, 1607, 1400, 1197, 1086, 947, 812, 747; **HRMS** (ESI+) calcd for C₁₄H₁₅ClN₂O₂ [M+H]⁺ : 279.0900, found: 279.0898.

4-(chloromethyl)-3-(4-fluorophenylethynyl)oxazolidin-2-one (5m): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5m product as a solid (57 mg, 90%), ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.34 (m, 2H), 7.04 – 6.94 (m, 2H), 4.95 – 4.85 (m, 1H), 4.09 (t, *J* = 9.0 Hz, 1H), 3.89 (q, *J* = 9.2, 5.8 Hz, 1H), 3.81 – 3.69 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (d, *J* = 249.6 Hz), 154.9, 133.8 (d, *J* = 7.9 Hz), 118.0, 115.7 (d, *J* = 22.1 Hz), 78.1, 72.8, 70.4, 49.6, 44.3; **IR** (KBr): 2922, 2259, 1758, 1421, 1207, 1168, 1040, 837; **HRMS** (ESI+) calcd for C₁₂H₉FCINO₂ [M+H]+ : 276.0204, found: 276.0215.

(*S*)4-Benzyl-3-(4-methylphenylethynyl)oxazolidin-2-one (5n):¹⁷ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5n product as a white solid (55 mg, 75%) ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, J = 8.0 Hz, 4H), 7.30 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 7.3 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 4.40 – 4.32 (m, 2H), 4.17 (dd, J = 7.0, 4.2 Hz, 1H), 3.30 (dd, J = 13.9, 3.3 Hz, 1H), 3.05 – 2.97 (m, 1H), 2.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 138.6, 134.4, 131.8, 129.7, 129.5, 129.2, 127.7, 119.2, 73.5, 67.6, 58.7, 38.1, 29.8, 21.6; **IR** (KBr) : 2922, 2258, 1757, 1419, 1262, 1092, 1025, 815.

(S)4-Benzyl-3-(4-methoxyphenylethynyl)oxazolidin-2-one (50):¹⁷ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 50 product as a white solid (63 mg, 82%) ¹H NMR (500 MHz, CDCl₃) δ 7.36 –

7.33 (m, 2H), 7.28 (t, J = 7.3 Hz, 2H), 7.23 (d, J = 7.3 Hz, 1H), 7.17 (d, J = 7.1 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.33 – 4.25 (m, 2H), 4.12 – 4.07 (m, 1H), 3.75 (s, 3H), 3.22 (dd, J = 13.8, 3.7 Hz, 1H), 2.95-2.91 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 159.9, 155.8, 134.4, 133.7, 129.5, 129.2, 127.7, 114.2, 114.1, 73.2, 67.6, 58.7, 55.4, 38.1, 29.8; **IR** (KBr): 2924, 2256, 1766, 1638, 1419, 1214, 1086, 831, 746.

(*S*)4-Benzyl-3-(4-bromophenylethynyl)oxazolidin-2-one (5p): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5p product as a white solid (60 mg, 68%) ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.30 (dd, *J* = 7.6, 3.2 Hz, 3H), 7.24 (d, *J* = 7.2 Hz, 2H), 4.42 – 4.34 (m, 2H), 4.18 (dd, *J* = 7.6, 4.5 Hz, 1H), 3.28 (dd, *J* = 13.9, 3.9 Hz, 1H), 3.03-2.98 (m, 1H); ¹³C NMR (151 MHz,) δ 155.5, 134.3, 133.1, 131.7, 129.5, 129.2, 128.1, 127.8, 122.6, 121.3, 79.1, 72.6, 67.7, 58.6, 38.3, 31.1; **IR** (KBr): 2920, 2253, 1759, 1414, 1210, 1187, 1093, 1066, 994, 820, 752, 704; **HRMS** (ESI+) calcd for C₁₈H₁₄BrNO₃ [M+H]⁺ : 356.0286 found: 356.0283.

3[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5q): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5q product as a solid, (52 mg, 78%), ¹H NMR (500 MHz, DMSO+CDCl₃) δ 7.88 (s, 1H), 7.73 (s, 2H), 7.41 (s, 1H), 7.18 (m, 2H), 4.52 (s, 2H), 4.06 (s, 2H), 3.91 (d, *J* = 2.6 Hz, 3H); ¹³C NMR (126 MHz, DMSO+CDCl₃) δ 156.6, 154.4, 132.3, 129.2, 127.6, 127.1, 126.6, 125.5, 117.9, 115.4, 104.3, 78.2, 69.2, 62.0, 53.7, 45.4; **IR** (KBr): 2923, 2253, 1756, 1647, 1486, 1220, 1026, 1002, 826, 765; **HRMS** (ESI+) calcd for C₁₆H₁₃NO₃ [M+H]⁺ : 268.0974, found: 268.0982.

4-(chloromethyl)-3-[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5r): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5r product as a solid, (63 mg, 80%), ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 9.4 Hz, 1H), 7.74 (s, 2H), 7.42 (s, 1H), 7.27 – 7.11 (m, 2H), 5.07 (s, 1H), 4.18-4.16 (m, 1H), 3.97-3.94 (m, 2H), 3.87-3.85 (m, 1H), 3.39 – 3.33 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 153.2, 132.2, 129.1, 127.5, 127.4, 127.0, 126.9, 126.5, 125.4, 125.3, 117.7, 115.0, 104.2, 77.6, 71.7, 69.2, 53.6, 47.4, 43.9; **IR** (KBr): 2924, 2253, 1759, 1640, 1487, 1218, 1027, 1002, 825, 764; **HRMS** (ESI+) calcd for C₁₇H₁₄ClNO₃ [M+H]⁺ : 316.0740, found: 316.0725.

(*S*)4-Benzyl-3-[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5s): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5s product as a solid, (67 mg, 75%), ¹H NMR (500 MHz, DMSO) δ 7.93 (s, 1H), 7.84-7.80 (m, 2H), 7.41 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.38-7.34 (m, 5H), 7.30 – 7.26 (m, 1H), 7.20 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.62 – 4.54 (m, 1H), 4.50 (t, *J* = 8.5 Hz, 1H), 4.23 (dd, *J* = 8.6, 5.4 Hz, 1H), 3.88 (s, 3H), 3.19 – 3.08 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 159.7, 157.2, 137.1, 135.6, 132.5, 131.5, 131.1, 130.5, 129.9, 129.0, 128.9, 121.3, 118.5, 107.9, 74.5, 69.4, 59.5, 57.2, 38.9, 30.9; IR (KBr): 2924, 2254, 1653, 1486, 1221, 1027, 1002, 826, 764; HRMS (ESI+) calcd for C₂₃H₁₉NO₃ [M+H]⁺: 380.1263 found: 380.1249.

3-(cyclohex-1-en-1-ylethynyl)oxazolidin-2-one (5t):¹⁵ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5t product as a colorless oil, (46 mg, 96%) ¹H NMR (500 MHz, CDCl₃) δ 6.14-6.11

(m, 1H), 4.45-4.42 (m, 2H), 3.91 (dd, J = 8.7, 7.3 Hz, 2H), 2.18 – 2.06 (m, 4H), 1.65 – 1.62 (m, 2H), 1.60 – 1.56 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 135.6, 119.6, 76.6, 72.9, 63.0, 47.3, 29.8, 29.5, 25.8, 22.4, 21.6; **IR** (neat): 2923, 2311, 1636, 1464 1384, 1270, 1118, 708.

4-(chloromethyl)-3-(cyclohex-1-en-1-ylethynyl)oxazolidin-2-one (5u):¹⁸ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5u product as a colorless oil, (54 mg, 90%) ¹H NMR (500 MHz, CDCl₃) δ 6.17 – 6.10 (m, 1H), 4.88 – 4.78 (m, 1H), 4.01 (t, *J* = 9.0 Hz, 1H), 3.81 (dd, *J* = 9.3, 5.8 Hz, 1H), 3.75 – 3.68 (m, 2H), 2.20 – 1.99 (m, 4H), 1.66 – 1.61 (m, 2H), 1.61 – 1.55 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 135.8, 119.4, 76.0, 73.0, 72.6, 49.9, 44.2, 29.8, 29.4, 25.8, 22.4, 21.5; **IR** (neat):2923, 2262, 1757, 1633, 1422, 1384, 1218, 1025, 746.

3-(2-chlorophenylethynyl)oxazolidin-2-one (5v): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5v product as a solid, (49 mg, 89%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.0, 1.9 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.23 – 7.16 (m, 2H), 4.49 (t, *J* = 7.9 Hz, 2H), 4.05 – 4.01 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 155.7, 135.5, 133.1, 129.3, 129.2, 126.6, 122.4, 84.0, 68.6, 63.3, 47.1; **IR** (neat): 2922, 2261, 1748, 1632, 1613, 1419, 1087, 1027, 747; **HRMS** (ESI+) calcd for C₁₁H₈ClNO₂ [M+H]⁺: 222.0322 found: 222.0326.

3-(2-trifluoromethylphenylethynyl)oxazolidin-2-one (5w): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5w product as a yellow oil (52 mg, 81%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 4.52 – 4.48

(m, 2H), 4.05 - 4.00 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 155.5, 133.3, 131.6, 130.9 (q, J = 30.4 Hz), 127.7, 125.9 (q, J = 4.5 Hz), 123.7 (q, J = 273.2 Hz), 120.8, 84.5, 68.3, 63.3, 46.9; **IR** (neat): 2925, 2262, 1768, 1481, 1415, 1317, 1260, 1168, 1112, 1033, 768, 746; **HRMS** (ESI+) calcd for C₁₂H₈F₃NO₂ [M+Na]⁺ : 278.0405 found: 278.0411.

3-(2-methoxyphenylethynyl)oxazolidin-2-one (**5x**):¹⁵ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5x product as a white solid, (46 mg, 84%) ¹**H** NMR (500 MHz, CDCl₃) δ 7.42 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.29 (m, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 4.52 – 4.44 (m, 2H), 4.07 – 4.00 (m, 2H), 3.88 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 155.9, 133.9, 129.8, 120.4, 111.3, 110.6, 82.5, 77.3, 77.0, 76.8, 67.4, 63.0, 55.8, 47.1; **IR** (KBr): 2923, 2329, 1637, 1464, 1384, 1250, 1025, 617.

4-(chloromethyl)-3-(2-methoxyphenylethynyl)oxazolidin-2-one (5y): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5y product as a white solid, (56 mg, 85%) ¹H NMR (500 MHz, CDCl₃) δ 7.42 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.32 – 7.27 (m, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 4.89-4.84 (m, 1H), 4.13 (t, *J* = 9.0 Hz, 1H), 3.93 (dd, *J* = 9.3, 5.9 Hz, 1H), 3.88 (s, 3H), 3.78 – 3.70 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 154.8, 134.0, 130.1, 120.6, 111.2, 110.7, 82.0, 72.8, 67.8, 55.9, 50.0, 44.1; **IR** (KBr): 2921, 2332, 2250, 1772, 1574, 1424, 1214, 1044, 986, 775; **HRMS** (ESI+) calcd for C₁₃H₁₂ClNO₃ [M+Na]⁺ : 288.0403 found: 288.0411.

3-(3-methylphenylethynyl)oxazolidin-2-one (5z):¹³ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5z

product as a solid, (47 mg, 94%) ¹**H NMR** (600 MHz, CDCl₃) δ 7.27 (s, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 4.49-4.46 (m, 2H), 4.01-3.98 (m, 2H), 2.32 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.0, 138.1, 132.3, 129.2, 128.7, 128.3, 122.0, 78.7, 71.5, 63.1, 47.2, 21.3; **IR** (KBr): 2917, 2254, 1756, 1423, 1226, 1147, 1030, 792, 746.

N,4-dimethyl-N-(phenylethynyl)benzenesulfonamide (**5aa**):¹³ Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5aa product as a solid, (57 mg, 80%), ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 8.7 Hz, 2H), 7.38 – 7.33 (m, 4H), 7.30 – 7.26 (m, 3H), 3.14 (s, 3H), 2.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.9, 133.4, 131.5, 129.9, 128.4, 128.0, 122.8, 84.1, 69.2, 39.5, 21.8; **IR** (KBr): 2922, 2306, 2253, 1716, 1409, 1323, 1161, 1093, 816, 701.

N,4-dimethyl-N-(2-trifluoromethylphenylethynyl)benzenesulfonamide (5ab): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5ab product as a solid, (63 mg, 71%), ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.38 – 7.30 (m, 3H), 3.16 (s, 3H), 2.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 145.1, 133.6, 133.1, 131.5, 130.5 (d, J = 30.3 Hz), 130.0, 127.9, 127.3, 125.9 (q, J = 4.9 Hz), 123.7 (d, J = 273.5 Hz), 121.5, 89.6, 66.0, 60.5, 39.3, 21.8; **IR** (KBr): 2923, 2241, 1606, 1362, 1318, 1165, 1029, 813, 746; **HRMS** (ESI+) calcd for C₁₇H₁₄F₃NO₂S [M+Na]⁺ : 376.0595 found: 376.0592.

3-(2-oxooxazolidin-3-yl)prop-2-yn-1-yl benzoate (5ac): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5ac product as a colorless oil, (52 mg, 85%), ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 7.0 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.54 – 7.40 (m, 2H), 5.10 (s, 2H), 4.58 – 4.36 (m, 2H),

4.06 – 3.88 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 156.1, 133.4, 129.9, 129.7, 128.6, 76.8, 66.8, 63.2, 53.1, 46.7; **IR** (neat): 2923, 2266, 1770, 1719, 1420, 1263, 1200, 1093, 1026, 748, 710; **HRMS** (ESI+) calcd for C₁₃H₁₁NO₄ [M+Na]⁺ : 268.0586 found: 268.0602.

3-(4-(3-chloromethyl)-2-oxooxazolidin-3-yl)prop-2-yn-1-yl benzoate (5ad): Prepared according to typical procedure II. The crude product was purified by flash chromatography (EtOAc/hexanes 1:2) to afford 5ad product as a colorless oil, (59 mg, 82%), ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 5.09 (s, 2H), 4.86 (m, 1H), 4.05 (t, *J* = 9.1 Hz, 1H), 3.85 (dd, *J* = 9.2, 5.8 Hz, 1H), 3.72 (d, *J* = 5.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 154.9, 133.4, 129.9, 129.6, 128.6, 76.2, 72.9, 67.0, 52.9, 49.4, 44.1; **IR** (neat) : 2927, 2267, 1718, 1600, 1425, 1266, 1025, 712; **HRMS** (ESI+) calcd for C₁₄H₁₂ClNO₄ [M+Na]⁺ : 316.0353 found: 316.0395.

6. ¹H, ¹³C, & ³¹P Spectra:

Diethyl [(4-bromophenyl)ethynyl]phosphonate (3a):

----5,7699

Diethyl (phenylethynyl)phosphonate (3b):

S32

Diethyl [(4-fluorophenyl)ethynyl]phosphonate (3c):

Diethyl (4-tolylethynyl)phosphonate (3d):

Z 7,4404 7,2471 7,2474 7,1622 7,1489		— 2.3596	$\frac{1.3951}{1.3716}$	— -0.0223
--	--	----------	-------------------------	-----------

S35
Diethyl [(4-tert-butylphenyl)ethynyl]phosphonate (3e):

Diethyl [(4-N,N dimethylaminophenyl)ethynyl]phosphonate (3g):

Diethyl [(4-cyanophenyl)ethynyl]phosphonate (3h):

7.6956 7.6810 7.6725 7.6583 - 7.2774	4.2722 4.2610 4.2332 4.2332	$\left(1.4323 \\ 1.4090 \\ 1.4000 $	0.0004

S40

Diethyl [(2-trifluoromethylbenzene)ethynyl]phosphonate (3i):

Diethyl [(2-chlorophenyl)ethynyl]phosphonate (3j):

7,16033 7,15897 7,15897 7,14365 7,14323 7,14323 7,14323 7,13393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,73393 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7339 7,7435 7,7455 7,7455 7,7355 7,7455 7,7355 7,7355 7,7755 7,7355 7,7755 7,7755 7,7755 7,77555 7,77555 7,775555 7,775555 7,775555 7,775555 7,775555 7,775555 7,775555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,7755555 7,775555555777775 7,775555577777777	4.2875 4.2645 4.2645 4.2645 4.2645 4.2645 4.2379	-1.4333 -1.4215 -1.4092	0.0004
---	--	-------------------------------	--------

Diethyl [(2-methoxyphenyl)ethynyl]phosphonate (3k):

Diethyl [(3-methylphenyl)ethynyl]phosphonate (3l):

7.3635 7.3500 7.3430 7.2434 7.2355	4.2319 4.2319 4.2206 4.2206 4.2072 4.2072 4.1972 4.1972 4.1878	- 2.3291	- 1.4000 - 1.3883 - 1.3761	-0.0222
\lor		1	\checkmark	

Diethyl [(6-methoxynaphthalen-2-yl)ethynyl]phosphonate (3m):

Diethyl (pyridine-2-ylethynyl)phosphonate (3n):

Diethyl (cyclohexen-1-ylethynyl)phosphonate (30):

3-(diethoxyphosphoryl)prop-2-yn-1-yl benzoate (3p):

Diethyl hex-1-yn-1-ylphosphonate (3r):

Dimethyl (phenylethynyl)phosphonate (3t):

Diisopropyl [(4-bromophenyl)ethynyl]phosphonate (4a):

7,5034 7,74899 7,34899 7,3308 7,372475 7,2475 4,7891 4,7891 4,7653 4,7754 4,7754	L1.3921 1.3870 1.3812 1.3772	0.0204
--	---------------------------------------	--------

Diisopropyl (phenylethynyl)phosphonate (4b):

Diisopropyl [(4-fluorophenyl)ethynyl]phosphonate (4c):

Diisopropyl (4-tolylethynyl)phosphonate (4d):

Diisopropyl [(4-tert-butylphenyl)ethynyl]phosphonate (4e):

Diisopropyl [(4-methoxyphenyl)ethynyl]phosphonate (4f):

Diisopropyl [(4-N, N dimethylaminophenyl)ethynyl]phosphonate (4g):

Diisopropyl [(4-cyanophenyl)ethynyl]phosphonate (4h):

S69

Diisopropyl [(2-trifluoromethylbenzene)ethynyl]phosphonate (4i):

Diisopropyl [(2-chlorophenyl)ethynyl]phosphonate (4j):

Diisopropyl [(2-methoxyphenyl)ethynyl]phosphonate (4k):

Diisopropyl [(3-methylphenyl)ethynyl]phosphonate (4l):

S75

Diisopropyl [(6-methoxynaphthalen-2-yl)ethynyl]phosphonate (4m):

Diisopropyl (pyridine-2-ylethynyl)phosphonate (4n):

S78

Diisopropyl (cyclohexen-1-ylethynyl)phosphonate (40):

3-(diisopropylphosphoryl)prop-2-yn-1-yl benzoate (4p):

3-(dibutylphosphoryl)prop-2-yn-1-yl benzoate (4q):

Diisopropyl hex-1-yn-1-ylphosphonate (4r):

Diisopropyl dec-1-yn-1-ylphosphonate (4s):

Dibutyl (phenylethynyl)phosphonate (4t):

S86

---4,9733

¹H & ¹³C Spectra:

3-(phenylethynyl)oxazolidin-2-one (5a):

3-(p-tolylethynyl)oxazolidin-2-one (5b):

3-(4-methoxyphenylethynyl)oxazolidin-2-one (5c):

3-(4-N,N-dimethylaminophenylethynyl)oxazolidin-2-one (5d):

3-(4-tert-butylphenylethynyl)oxazolidin-2-one (5e):

3-(4-bromophenylethynyl)oxazolidin-2-one (5f):

4.5170 4.5031 4.5014 4.4984 4.4984 4.4851 4.0159 4.0159 4.0112 4.0112 3.9973 3-(4-fluorophenylethynyl)oxazolidin-2-one (5g):

7,4574 7,4528 7,4490 7,4396 7,4396 7,4310 7,4316 7,4311 7,4311 7,4311 7,4311 7,23079 7,3124 7,3079 7,2079 7

3-(4-cyanophenylethynyl)oxazolidin-2-one (5h):

4-(chloromethyl)-3-(phenylethynyl)oxazolidin-2-one (5i):

4-(chloromethyl)-3-(p-tolylethynyl)oxazolidin-2-one (5j):

4-(chloromethyl)-3-(4-methoxyphenylethynyl)oxazolidin-2-one (5k):

4-(chloromethyl)-3-(4-N,N-dimethylaminophenylethynyl)oxazolidin-2-one (51):

4-(chloromethyl)-3-(4-fluorophenylethynyl)oxazolidin-2-one (5m):

(S) 4-Benzyl-3-(4-methylphenylethynyl)oxazolidin-2-one (5n):

(S)4-Benzyl-3-(4-bromophenylethynyl)oxazolidin-2-one (5p):

3[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5q):

4-(chloromethyl)-3-[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5r):

(S)4-Benzyl-3-[(6-methoxynaphthalen-2yl)ethynyl]oxazolidin-2-one (5s):

3-(cyclohex-1-en-1-ylethynyl)oxazolidin-2-one (5t):

4-(chloromethyl)-3-(cyclohex-1-en-1-ylethynyl)oxazolidin-2-one (5u):

3-(2-chlorophenylethynyl)oxazolidin-2-one (5v):

3-(2-trifluoromethylphenylethynyl)oxazolidin-2-one (5w):

3-(2-methoxyphenylethynyl)oxazolidin-2-one (5x):

4-(chloromethyl)-3-(2-methoxyphenylethynyl)oxazolidin-2-one (5y):

3-(3-methylphenylethynyl)oxazolidin-2-one (5z):

3-(2-oxooxazolidin-3-yl)prop-2-yn-1-yl benzoate (5ac):

3-(4-(3-chloromethyl)-2-oxooxazolidin-3-yl)prop-2-yn-1-yl benzoate (5ad):

Figure S1: SEM images of the reused catalyst

Figure S2: EDS-SEM images of the catalyst, to show the homogeneous distribution of Cu over manganese oxide sphere.

7. References

- P. Pal, S. K. Pahari, A. K. Giri, S. Pal, H. C. Bajaj and A. B. Panda, *J. Mater. Chem. A*, 2013, 1, 10251.
- 2. P. Pal, A. K. Giri, H. Singh, S. C. Ghosh and A. B. Panda, Chem. Asian J., 2014, 9, 2392.
- 3. P. Liu, J. Yang, P. Li and L. Wang, Appl. Organometal. Chem., 2011, 25, 830.
- Y. Moglie, E. Mascaro, V. Gutierrez, F. Alonso and G. Radivoy, *J. Org. Chem.*, 2016, 81, 1813.
- Y. Wang, J. Gan, L. Liu, H. Yuan, Y. Gao, Y. Liu and Y. Zhao, J. Org. Chem., 2014, 79, 3678.
- 6. X. Li, S. Sun, F. Yang, J. Kang, Y. Wu and Y. Wu, Org. Biomol. Chem., 2015, 13, 2432.
- V. Cavallaro, Y. F. Moglie, A. P. Murray and G. E. Radivoy, *Bioorg. Chem.*, 2018, 77 420–428.
- Y. Zhang, Y. Zhang, J. Xiao, Z. Peng, W. Dong and D. An, Eur. J. Org. Chem., 2015, 7806.
- 9. X. Li, F. Yang, Y. Wu and Y. Wu, Org. Lett., 2014, 16, 992.
- 10. T. J. Kettles, N. Cockburn and W. Tam, J. Org. Chem., 2011, 76, 6951.
- 11. Jouvin, K.; Heimburger, J.; Evano, G. Chem. Sci., 2012, 3, 756-760.
- Y. Gao, G. Wang, L. Chen, P. Xu, Y. Zhao, Y. Zhou and L.-B. Han, J. Am. Chem. Soc., 2009, 131, 7956.
- 13. W. Jia and N. Jiao, Org Lett., 2010, 12, 2000.
- K. Dooleweerdt, H. Birkedal, T. Skrydstrup and T. Ruhland, J. Org. Chem., 2008, 73, 9447.
- 15. X. Jin, K. Yamaguchi, and N. Mizuno, Chem. Commun., 2012, 48, 4974.
- A. Pinto, D. Kaiser, B. Maryasin, G. D. Mauro, L. Gonzµlez and N. Maulide, *Chem. Eur. J.*, 2018, **24**, 2515.
- 17. B. Yao, Z. Liang, T. Niu and Y. Zhang, J. Org. Chem., 2009, 74, 4630.
- 18. W.-S. Wang, P. Chen and Y. Tang, *Tetrahedron*, 2017, 73, 2731.