Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

W-Nb-O oxides with tunable acid properties as efficient catalysts for

the transformation of biomass-derived oxygenates in aqueous systems

Daniel Delgado, ^a Alberto Fernández-Arroyo, ^a Marcelo E. Domine, ^{*a} Ester García-

González^b, José M. López Nieto^{*a}

^{a)} Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.

E-mail: jmlopez@itq.upv.es, mdomine@itq.upv.es

^{b)} Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.

Content

Experimental part.

Figure S1. Examples of chromatograms analyzed at 0 h (A) and 5 h (B) of reaction.

Figure S2. N₂-adsorption-desorption isotherms of W-Nb-O catalysts; a) WNb-0; b)

WNb-029; c) WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1.

Figure S3. BJH pore size distribution of W-Nb-O catalysts: a) WNb-0; b) WNb-0.29; c)

WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1.

Table S1. Catalytic results of W-Nb-O oxides in the aerobic transformation of glycerol.

Table S2. Catalytic results of W-Nb-O mixed oxides catalysts in the valorization of the aqueous model mixture at 200 °C.

Figure S4. A) FTIR spectra of adsorbed pyridine: a) WNb-0; b) WNb-0.29; c) WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1. B) Amount of adsorbed ammonia per gram of catalysts as a function of Nb-content. C) Amount of adsorbed ammonia per surface area of catalyst as a function of Nb-content.

Figure S5. Selectivity to acrolein (A), heavy compounds (HC's) (B) and carbon oxides (C) as a function of reaction temperature during the aerobic transformation of glycerol. Complete conversion of glycerol is achieved in all cases. Reaction conditions: glycerol/H₂O/O₂/He molar ratio of 2/40/4/54, Contact time, W/F, of 81 g_{cat} h (mol_{gly})⁻¹.

Figure S6. Reaction network (Self-aldol condensation of propanal to 2-methyl-2pentenal, Esterification of acetic acid and ethanol to ethyl acetate and Summarized reaction network).

Figure S7. Aqueous model mixture before (A) and after (B) reaction using WNb-0.62 catalyst: Reaction conditions: 7h at 180 °C (P_{N2} =13 bar).

Table S3. Catalytic results of W-Nb-O oxides during propanal self-aldol condensation in the presence and absence of water.

Table S4. Reuse of catalysts on the transformation of oxygenated compounds present in aqueous model mixtures.

 Table S5. Metal loss of catalysts after first catalytic use.

Figure S8. Main products and total organic yields (wt%) for different catalysts in the condensation of an aqueous mixture of oxygenated compounds after 1 h of reaction.

Table S6. Catalytic activity in the conversion of oxygenated compounds inaqueous model mixture of WNbO catalysts at 200 °C.

Table S7: Total organic yield and normalized total organic yield values for differentWNb-O samples in the condensation of propanal in aqueous phase.

Experimental part

Catalytic tests for condensation reaction

Based on the aqueous model mixture composition, a theoretical maximum total organic yield can be calculated, assuming that: a) 100% conversion for all reactants is achieved, b) acetic acid can be equally converted to ethyl acetate and acetone) and c) final products are C₉ compounds (no intermediate or heavier products are present in the final mixture). In this ideal scenario, the calculated composition of the final mixture is: 51.3 wt% of water, 19.1 wt% of ethyl acetate, and 29.6 wt% of C9 products. Therefore, results of catalytic experiments expressed in terms of Total organic yield (TOY) and yield to the main reaction products are calculated by considering that \approx 30 wt% is the maximum value attainable. In this way, Total organic products yield (TOY) measured during reaction = 20.0 wt%; Maximum total organic products yield attainable (theoretical) = 30.0 wt%; Calculated total organic products yield (referred to the maximum) = 66.7%.

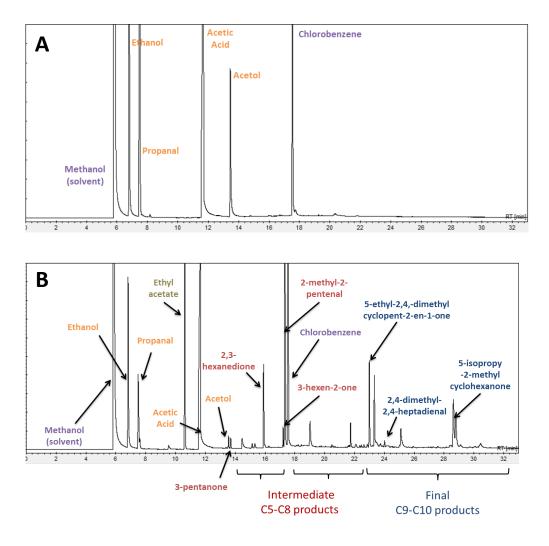


Figure S1. Examples of chromatograms analyzed at 0 h (A) and 5 h (B) of reaction.

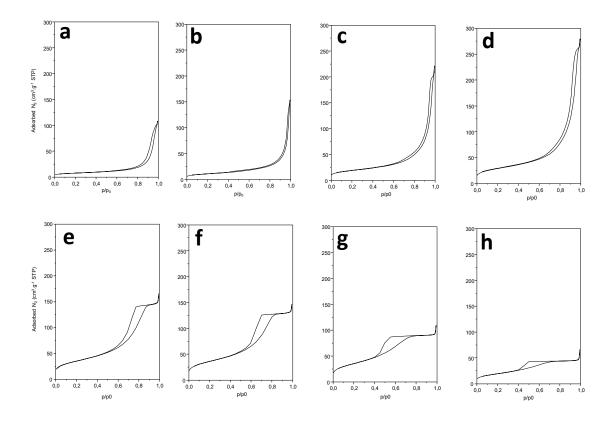
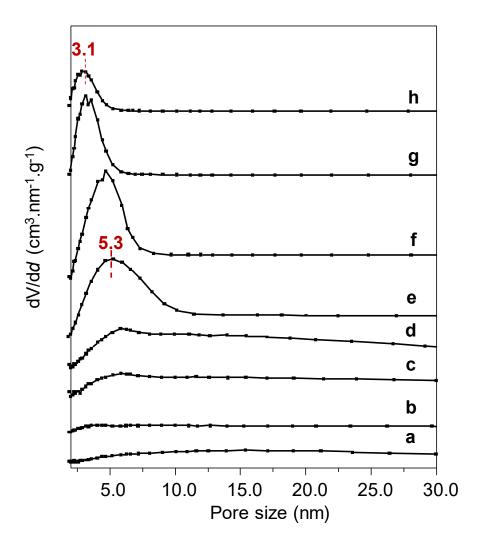
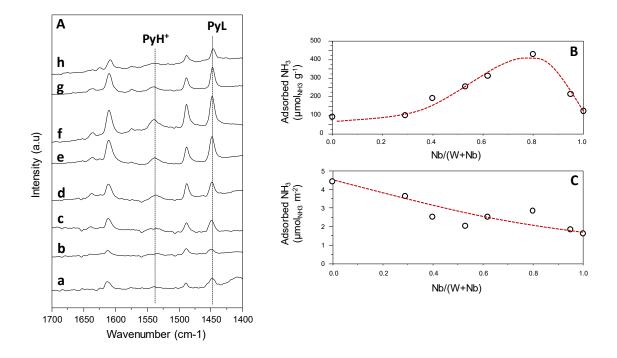



Figure S2. N₂-adsorption-desorption isotherms of W-Nb-O catalysts: a) WNb-0; b) WNb-0.29; c) WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1.

Figure S3. BJH pore size distribution of W-Nb-O catalysts: a) WNb-0; b) WNb-0.29; c) WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1.

Catalyst	Glycerol	Yield (%)							
	conversion (%)	Acrolein	COx	Heavy compounds ^a	Others ^b				
WNb-0	100.0	82.2	8.9	4.4	4.1				
WNb-0.29	99.9	83.5	7.8	6.1	2.8				
WNb-0.53	99.7	67.6	11.2	15.8	5.5				
WNb-0.80	99.7	62.6	11.0	22.4	4.0				
WNb-1	100.0	45.3	15.7	35.8	3.2				


Table S1. Catalytic properties of W-Nb-O oxides in the aerobic transformation of glycerol.

^{a.} Considered as compounds that are not eluted into the gas chromatograph. ^{b.} Small amounts of acetaldehyde, acetic acid and acrylic acid. Reaction conditions: 295 °C, glycerol/oxygen ratio of 2/4.

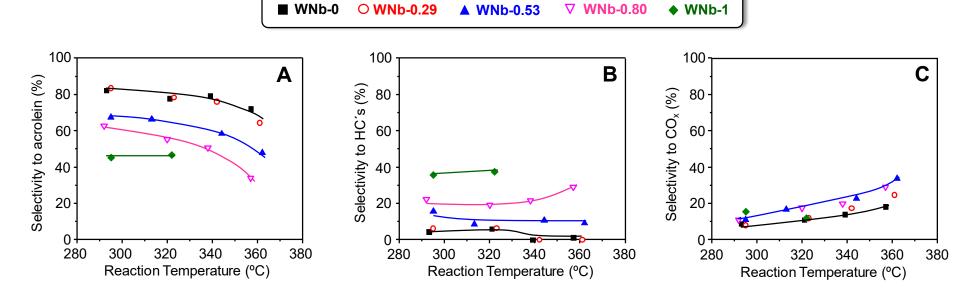
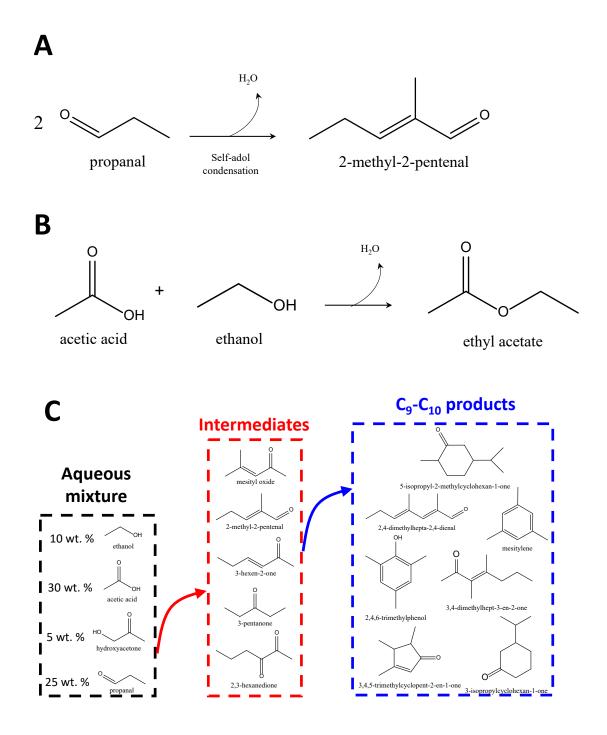

Sampla	Total	Conver	rsion (%)			Yield (%)	Carbon			
Sample	organic yield (%)	Acetol Propana		Ethanol	Acetic acid	C5-C8	C9-C10	2M2P ^b	ethyl acetate	- balance (%)
WNb-0	52.9	100	86.6	49.8	0.0	12.4	11.2	29.3	22.3	90.9
WNb-0.29	56.6	100	85.1	50.8	8.2	13.4	10.7	32.5	19.0	87.2
WNb-0.40	59.3	100	94.1	47.1	8.0	13.9	16.0	29.4	23.6	87.8
WNb-0.53	64.2	100	93.8	56.7	8.0	13.5	18.0	32.7	19.4	90.8
WNb-0.62	64.5	100	90.0	51.3	9.8	11.2	17.7	35.6	19.2	94.0
WNb-0.80	63.9	100	91.0	52.8	10.1	9.5	19.0	35.4	20.5	94.5
WNb-0.95	63.5	100	94.6	52.1	4.3	10.4	19.0	34.1	19.4	94.0
WNb-1	65.2	100	92.0	51.9	6.5	10.5	19.2	35.5	20.2	95.0

Table S2. Catalytic results of W-Nb-O mixed oxides catalysts in the valorization of the aqueous model mixture at 200 °C.^a


^a Reaction conditions: aqueous model mixture (3.0 g) and catalyst (0.15 g) in autoclave-type reactor, at 13 bar (under N₂) and 200°C under continuous stirring during 7 h. ^b 2M2P = 2-methyl-2-pentenal.

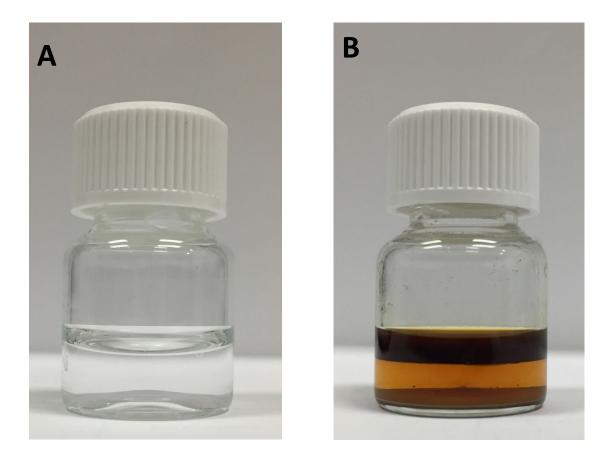

Figure S4. A) FTIR spectra of adsorbed pyridine: a) WNb-0; b) WNb-0.29; c) WNb-0.40; d) WNb-0.53; e) WNb-0.62; f) WNb-0.80; g) WNb-0.95; h) WNb-1. B) Amount of adsorbed ammonia per gram of catalysts as a function of Nb-content. C) Amount of adsorbed ammonia per surface area of catalyst as a function of Nb-content.

Figure S5. Selectivity to acrolein (A), heavy compounds (HC's) (B) and carbon oxides (C) as a function of reaction temperature during the aerobic transformation of glycerol. Complete conversion of glycerol is achieved in all cases. Reaction conditions: glycerol/H₂O/O₂/He molar ratio of 2/40/4/54, Contact time, W/F, of 81 g_{cat} h (mol_{gly})⁻¹.

Figure S6. Reaction network: A) Self-aldol condensation of propanal to 2-methyl-2pentenal; B) Esterification of acetic acid and ethanol to ethyl acetate; C) Summarized reaction network.

Figure S7. Aqueous model mixture before (A) and after (B) reaction using WNb-0.62 catalyst: Reaction conditions: 7h at 180 °C (P_{N2} =13 bar).

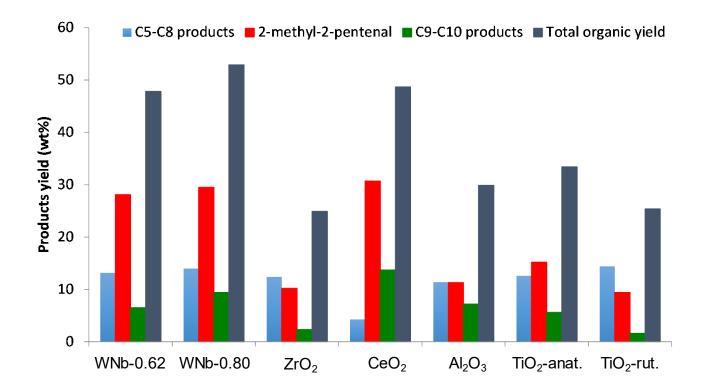
Catalyst	Propanal Conversion	Total Organic Product Yield				
	(%)	(%)				
WNb-0	38.7	20.0				
WNb-0.29	42.2	26.0				
WNb-0.62	59.6	59.0				
WNb-1	39.7	29.0				

Table S3: Catalytic results of W-Nb-O oxides during propanal self-aldol condensation at lower contact time.^a

^a Reaction Conditions: Initial mixture (3.00 g), with a Propanal/Ethanol/H₂O wt% ratio of 25/45/30; weight of catalyst = 0.05 g. In autoclave-type reactor, at 13 bar N₂ and 200 °C under continuous stirring; time on stream = 1 h.

Catalyst	Reuse cycles ^b	Total Organic Yield (%)	Conversion (%)			Products Yield (%)				Carbon	
			Acetol	Propanal	Ethanol	Acetic Acid	C5-C8	C9-C10	2M2P °	Ethyl acetate	balance (%)
WNb-0.62	0	64.5	100	90.0	51.3	9.8	11.2	17.7	35.6	19.2	94
	1	61.7	100	87.1	51.1	7.6	10.2	18.2	33.3	20.5	95
	2	60.3	100	86.4	51.3	4.9	9.6	17.9	32.8	20.1	93
WNb-1	0	65.2	100	92.0	51.9	6.5	10.5	19.2	35.5	20.2	95
	1	64.3	100	92.8	45.6	5.9	11.0	16.3	37.0	22.7	97
	2	64.3	100	90.9	45.4	6.3	12.0	15.7	36.6	22.3	96

Table S4. Reuse of catalysts on the transformation of oxygenated compounds present in aqueous model mixtures.^a


^a Reaction Conditions: For each use, aqueous model mixture (3.00 g) and catalyst (0.15 g) in autoclave-type reactor, at 13 bar N₂ and 200°C under continuous stirring; time on stream = 7 h. ^b Reuse cycles; $R0 = 1^{st}$ use; $R1 = 2^{nd}$ use; $R2 = 3^{rd}$ use.

^c 2M2P = 2-methyl-2-pentenal.

 Table S5. Metal loss of catalysts after first catalytic use.

Sample	Metal Loss after first use (wt%) ^a
$Ce_{0.5}Zr_{0.5}O_2$	30.0
WNb-0.62	Not detected.
WNb-1	Not detected

^a determined by ICP measurements of reaction liquids

Figure S8: Main products and total organic yields (wt%) for different catalysts in the condensation of an aqueous mixture of oxygenated compounds after 1 h of reaction at 200 °C.

Catalyst	Total Organic Yield (%)	Conversion (%)				Products Yield (%)			Reaction Rate
		Acetol	Propanal	Ethanol	Acetic Acid	C5-C8	C9-C10+	2M2P ^d	(mmol/min·g) ^e
WNb-0.00	46.6 ^b	100.0	77.2	47.5	5.9	13.9	6.3	26.4	1467
WNb-0.29	46.5 ^b	100.0	74.9	48.8	6.5	16.9	5.5	24.1	1589
WNb-0.40	50.6 ^b	100.0	82.8	49.1	6.8	15.1	7.8	27.7	1763
WNb-0.53	50.2°	100.0	80.4	51.2	4.0	18.5	5.8	25.9	1816
WNb-0.62	52.3°	100.0	82.1	48.3	4.8	13.0	10.7	28.6	1854
WNb-0.80	52.9 ^c	100.0	79.0	39.5	12.6	14.0	9.4	29.5	1882
WNb-0.95	51.4°	100.0	68.8	52.2	11.4	11.3	8.6	31.5	1757
WNb-1.00	51.0 ^c	100.0	71.2	42.6	11.4	14.0	8.7	28.3	1577

Table S6. Catalytic activity in the conversion of oxygenated compounds in aqueous model mixture of WNbO catalysts at 200 °C.^a

^{*a*} <u>Reaction Conditions</u>: aqueous model mixture (3.00 g) and catalyst (0.15 g) in autoclave-type reactor, at 13 bar N_2 and 200 °C under continuous stirring; ^{*b*} time on stream = 3 h; ^{*c*} time on stream = 1 h; ^{*d*} 2M2P = 2-methyl-2-pentenal; ^{*e*} Calculated as the mmol of products formed per minute and gram of catalyst at time on stream = 1 h.

Catalysts	Total Organic Yield (%)	Surface density of acid sites (mmol/m ²)	Normalized Total Organic Yield (%) ^a
WNb-0.00	20	0.98	20.4
WNb-0.29	26	0.78	33.3
WNb-0.62	59	0.70	84.3
WNb-1.00	29	0.54	53.4

Table S7: Total organic yield and normalized total organic yield values for different WNb-O samples in the condensation of propanal in aqueous phase.

^a Total organic yield (%) / Surface density of acid sites (mmol/m²).