Supplementary Information

Midgap-state-mediated two-steps photoexcitation in nitrogen defective $g-C_3N_4$ atomic layers for superior photocatalytic CO₂ reduction

Jie-Yinn Tang^a, Xin Ying Kong^a, Boon-Junn Ng^a, Yi-Hao Chew^a, Abdul Rahman Mohamed^b and Siang-Piao Chai^{*a}

^aMultidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.

^bLow Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

*Correspondence to: <u>chai.siang.piao@monash.edu</u>

S1 Experimental procedure for bulk g-C₃N₄ nanosheets

Bulk g-C₃N₄ nanosheets (CN-B) were synthesized via thermal polymerization route with melamine as the precursor. 2g of melamine powder was transferred into a 50 ml alumina crucible with closed lid. The crucible was placed in a muffle furnace and heated at a designated temperature of 550°C for 4 hours. Upon completion of reaction, the product was allowed to cool to room temperature. The product was subsequently collected and washed with ethanol and deionized water for several times to eliminate any unreacted residue. Lastly, the product was dried overnight in a vacuum oven at 60°C, and CN-B in the form of yellow precipitate was obtained.

Fig. S1 (a) Nitrogen adsorption-desorption isotherm and (b) BJH pore size distribution of CN_{x} -550.

S3 AFM topographic image of CN-B

Fig. S2 AFM topographic image and height profile of CN-B.

S4 FTIR characterization

FTIR spectra in Fig. S3 depicts the molecular fingerprints of CN-U and CN_x . The spectra exhibited three characteristic absorption bands of a conventional $g-C_3N_4$ nanomaterials, which are affiliated to: (i) 800 cm⁻¹ for stretching of tri-s-triazine units; (ii) 1200 – 1700 cm⁻¹ for stretching of C-N heterocycles; and (iii) 3000 – 3400 cm⁻¹ for stretching of N-H or O-H functional group. Since the absorption band for N-H and O-H stretching vibrations was overlapped, this posed a challenge in justifying the variation of NH/NH₂ species that was involved in the reduction process.¹ The elimination of NH/NH₂ species in CN_x could be further evaluated through XPS characterization.

Fig. S3 FTIR spectra of CN-U and CN_x.

S5 XPS characaterization of CN_x-550

Fig. S4 Full survey XPS spectrum of CN_x -550.

 $\label{eq:stable} \textbf{Table S1} \quad \text{Elemental composition of CN-U and CN}_{x}.$

Sample	C at%	N at%	C:N Ratio
CN-U	40.33	59.67	0.676
CN _x -500	40.95	59.05	0.693
CN _x -525	42.04	57.96	0.725
CN _x -550	42.57	57.43	0.741
CN _x -575	43.54	56.46	0.771

Table S2	XPS analysis of CN-U and	CN _x -550.
----------	--------------------------	-----------------------

Sample	C 1s			N 1s		
	Position	Chem. State	At%	Position	Chem. State	At%
CN-U	284.73	C-C	4.73	398.6	N(sp²)	68.62
	286.11	C-NH _x	1.41	399.76	N(sp ³)	22.60
	288.19	N-C-N	93.86	401.03	NH _x	8.77
CN _x -550	284.88	C-C	1.67	398.6	N(sp ²)	68.42
	285.92	C-NH _x	0.41	399.86	N(sp ³)	25.82
	288.29	N-C-N	97.91	401.13	NH _x	5.75

Fig. S5 Tauc plot of transformed KM function versus photon energy of (a) CN-U, (b) CN_x -500, (c) CN_x -525 and (d) CN_x -575. The insets show the corresponding Urbach plot of the sample photocatalysts.

S7 Electrochemical characterization

Fig. S6 Electrochemical characterizations of sample photocatalysts. (a-e) Mott-Schottky plot of CN-U, CN_x -500, CN_x -525, CN_x -550 and CN_x -575 respectively. (f) Nyquist plot of CN-U and CN_x .

S8 O₂ evolution from photocatalytic CO₂ reduction and control experiments

As photocatalytic conversion of CO_2 to CH_4 gas is a cascade system which involves the oxidation of H_2O species and CO_2 reduction, thereby a significant amount of O_2 gas was detected during the process. The photoreactor was purged thoroughly with humidified CO_2 gas prior to photocatalytic reaction for the removal of excess air in the reactor. Nevertheless, O_2 and N_2 residues remained traceable in the reactor effluent gas. Volumetric ratio of O_2 to N_2 in the effluent gas was thus measured for better quantification of O_2 evolution. As depicted in Fig. S7, a sharp decline in O_2 : N_2 ratio was observed in the first 1 hour of reaction. This drastic change can be ascribed to the consumption of residual O_2 to form O_2^- species, as explained in the following equation:^{2,3}

$$O_2 + e^- \rightarrow O_2^-$$

Meanwhile, generation of CH_4 from CO_2 reduction occurred concurrently upon photoirradiation. The residual O_2 competes with CO_2 for photogenerated electrons, conducing to less O_2 and CH_4 products formed. Since the reactor was much concentrated with CO_2 gas, there exists a greater tendency for CO_2 conversion into CH_4 by accepting the photogenerated electrons; while O_2 was generated through H_2O oxidation with photogenerated holes. O_2 evolution eventually outcompetes the consumption of O_2 gas, and $O_2:N_2$ ratio progressively increased as the reaction proceeded.

Fig. S7 Time dependence of $O_2:N_2$ volumetric ratio during photocatalytic CO_2 reduction experiment over CN_x -550 under visible light irradiation.

Fig. S8 Yield of photocatalytic CH_4 evolution over CN_x -550 under visible light illumination. Control experiments were performed under four scenarios: (i) under CO_2 flow in the absence of H_2O vapour, (ii) under N_2/H_2O vapour flow, (iii) under CO_2/H_2O vapour environment without photocatalysts and lastly, (iv) in dark condition.

References

- 1 Z. Hong, B. Shen, Y. Chen, B. Lin and B. Gao, J. Mater. Chem. A, 2013, 1, 11754.
- 2 X. Y. Kong, W. L. Tan, B.-J. Ng, S.-P. Chai and A. R. Mohamed, *Nano Res.*, 2017, **10**, 1720– 1731.
- 3 H. Zhao, L. Liu, J. M. Andino and Y. Li, *J. Mater. Chem. A*, 2013, **1**, 8209–8216.