Supplementary Information for

One-step Green Conversion of Benzyl Bromide to Aldehydes on NaOH-modified $g-C_3N_4$ with Dioxygen under LED Visible

Light

Dan Liu, Chenwei Qiu, Minbo Li, Yanyu Xie, Lu Chen, Huaxiang Lin, Jinlin Long, Zizhong Zhang*, Xuxu Wang*

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.

S1. Synthesis of g-C₃N₄-HV and Na/ g-C₃N₄-HV

g-C₃N₄-HV was prepared followed the method reported previously, which under the further alkali treatment with NaOH to obtain the sample Na/g-C₃N₄-HV. In a typical synthesis procedure, cyanimide (5 g) was loaded in a porcelain boat and then treated in a pipe furnace at 500 °C for 4 h under flowing nitrogen (60 mL·min⁻¹) with a ramp rate of 1 °C·min⁻¹. For the preparation of g-C₃N₄-HV, the resulting light yellow powder (g-C₃N₄) was sequentially treated in vacuum (10⁻² Torr) at 550 °C for 1h. The NaOH treated g-C₃N₄-HV sample (Na/g-C₃N₄-HV) was synthesized by impregnation method. The g-C₃N₄-HV was added in NaOH solution (5 wt.%) with continuously agitation at 200 °C until the complete evaporation of water. The resulting powder was washed several times with deionized water and then dried in air oven at 60 °C.

S2. Reactor Ventilation O2 Steps

The operation of introducing O_2 was carried out in a double row tube. O_2 was introduced into the reaction tube by inserting a steel needle (20 cm) connecting an oxygen source with a rubber tubing to the bottom of the tube. Four Schlenk tubes with photocatalyst, solvent and substrate was bubbled by O_2 at the same time. The total flow rate was 20 mL/min and 5 mL/min each. The reactor was continuously exhausted with flow rate 20 mL/min of O_2 for 30 min and then was kept in O_2 .

S3. Correlation calculation

Theoretically, the nitrogen atoms mainly have two chemical states in the triazine-based carbon nitride, including 75% (N1) in C_3N_3 rings and 25% (N2) serving as bridge groups. In the tri-s-triazine-based carbon nitride, there are three main types of N species, including 75% N1

(idem), 12.5% N2 (idem), and 12.5% N3 (N in the center of the tri-s-triazine ring) [1]. N1 is the sp²-hybridized aromatic N bonded to carbon atoms (C=N-C), involving two σ bonds and one π bond. N2 and N3 have three σ bonds, but N3 is located within tri-s- triazine and shared by three triazine rings. The lone pairs electrons of N3 are conjugated with the π electron of three rings [2]. It is estimated accordingly that N3 atoms have more positive charge than N1 and N2 atoms and thus higher bonding energy than N1 and N2 [3].

C_H=N3/12.5%, C_H: Heptazine rings content (%)

Bridge sites content (%) = $(100-C_{\rm H}) \times 25\% + C_{\rm H} \times 12.5\%$

S4. Characterization and selective oxidation activity of g-C₃N₄-HV and Na/g-C₃N₄-HV.

Figure S1. The spectrogram of the LED lamp

Figure S2. XRD pattern of g-C₃N₄, g-C₃N₄-HV and Na/g-C₃N₄-HV sample.

Figure S3. N 1s high-resolution XPS spectra for g-C₃N₄-HV and Na/g-C₃N₄-HV sample.

Figure S4. Zeta potential of g-C₃N₄-HV and Na/g-C₃N₄-HV sample measured in H₂O (pH=7).

Figure S5. Photocatalytic performance of g-C₃N₄-HV and Na/g-C₃N₄-HV for the oxidation of benzyl bromide with O₂.

	Sample	N1	N2	N3	Bridge sites
	B.E (eV)	398.7±0.1	399.7±0.3	401.0±0.1	content (%)*
Atom content (%)	g-C ₃ N ₄	72.20	20.58	7.22	17.78
	g-C ₃ N ₄ -HV	72.53	16.56	10.91	14.09
	Na/g-C ₃ N ₄ -HV	72.46	16.68	10.86	14.14

Table S1. Distribution of N atoms in g-C₃N₄, g-C₃N₄-HV, Na/g-C₃N₄-HV.

* Bridge sites content (%) = (100-N3/12.5%)×25%+N3/12.5%×12.5%

References

[1] Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao and G. Shi, Chem. Commun., 2010, 46, 4740.

[2] Q. Guo, Q. Yang, L. Zhu, C. Yi, S. Zhang and Y. Xie, Solid State Commun., 2004, 132, 369.

[3] J. Liu, T. Zhang, Z. Wang, G. Dawson and W. Chen, J. Mater. Chem., 2011, 21, 14398.