Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information

Cyclic telluride reagents with remarkable glutathione peroxidase-like activity for purification-free synthesis of highly pure organodisulfides

Kenta Arai*, Yuui Osaka, Masahiro Haneda, and Yuumi Sato

Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

*Corresponding author: k-arai4470@tokai-u.jp (KA)

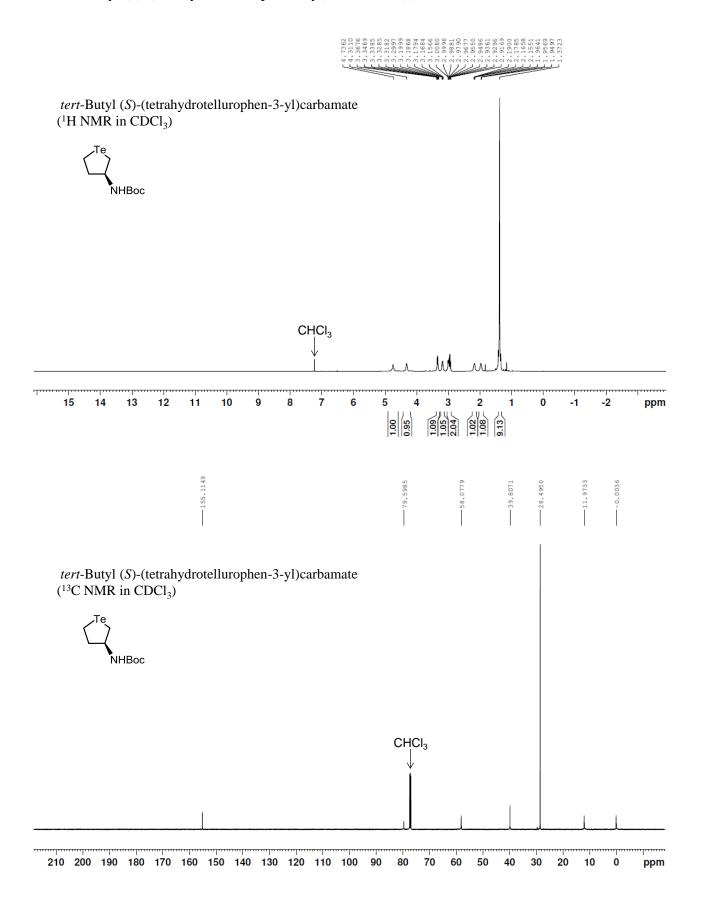
Contents

1. NMR spectra

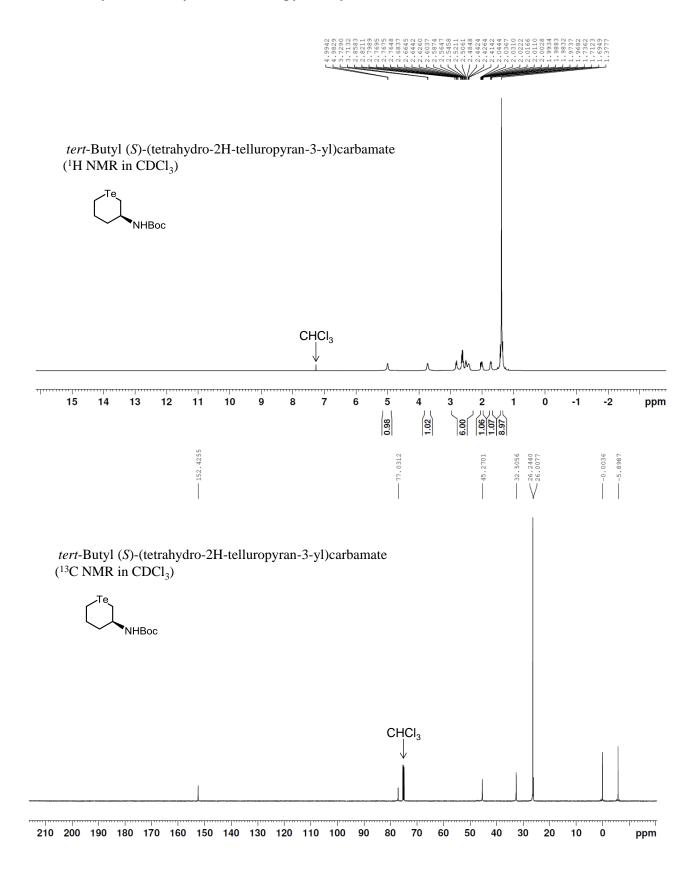
1.1	<i>tert</i> -Butyl (S)-(tetrahydrotellurophen-3-yl)carbamate (7)	3
1.2	<i>tert</i> -Butyl (S)-(tetrahydro-2H-telluropyran-3-yl)carbamate (8)	…4
1.3	(S)-Tetrahydrotellurophen-3-amine hydrochloride (4)	5
1.4	(<i>S</i>)-Tetrahydro-2H-telluropyran-3-amine hydrochloride (5)	6
1.5	NMR spectra of disulfides (16a–s)	7

2. Supplemental Figures and Tables

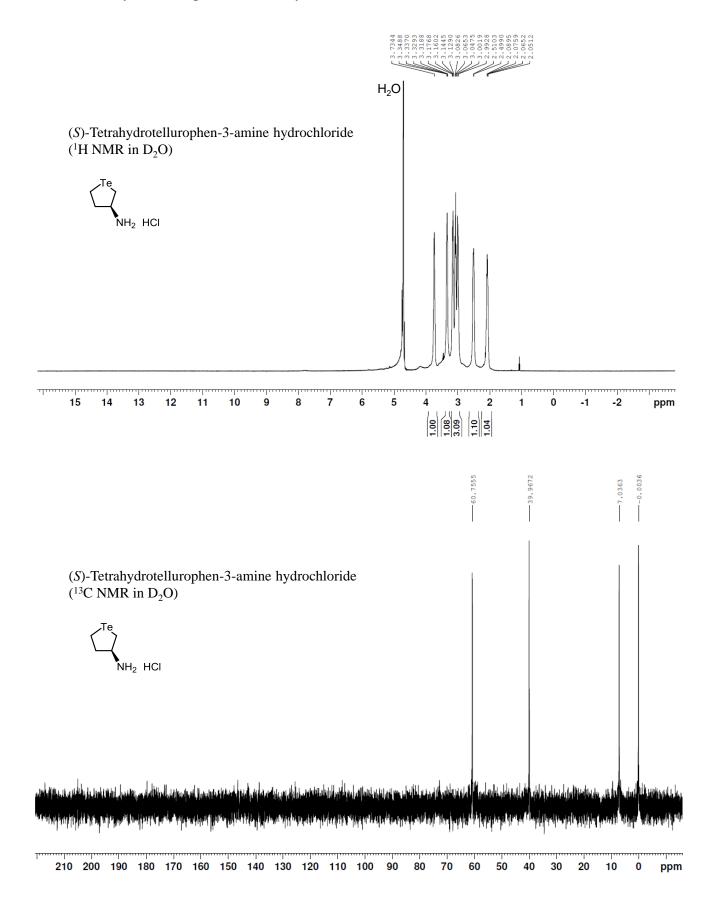
Fig. S1 ESI(+)-MS spectral changes upon the oxidation and subsequent reduction of 4 in H_2O at	26
25 °C.	20
Fig. S2 ¹ H NMR spectral changes upon oxidation and subsequent reduction of tellurides 4–6 in D ₂ O at 25 °C.	27
Fig. S3 ¹ H NMR spectral changes upon oxidation and subsequent reduction of tellurides 7 and 8 in	28
CD_3OD at 25 °C.	
Fig. S4 GPx-like activity coupled with reduction of GSSG by NADPH in the presence of glutathione	29
reductase	

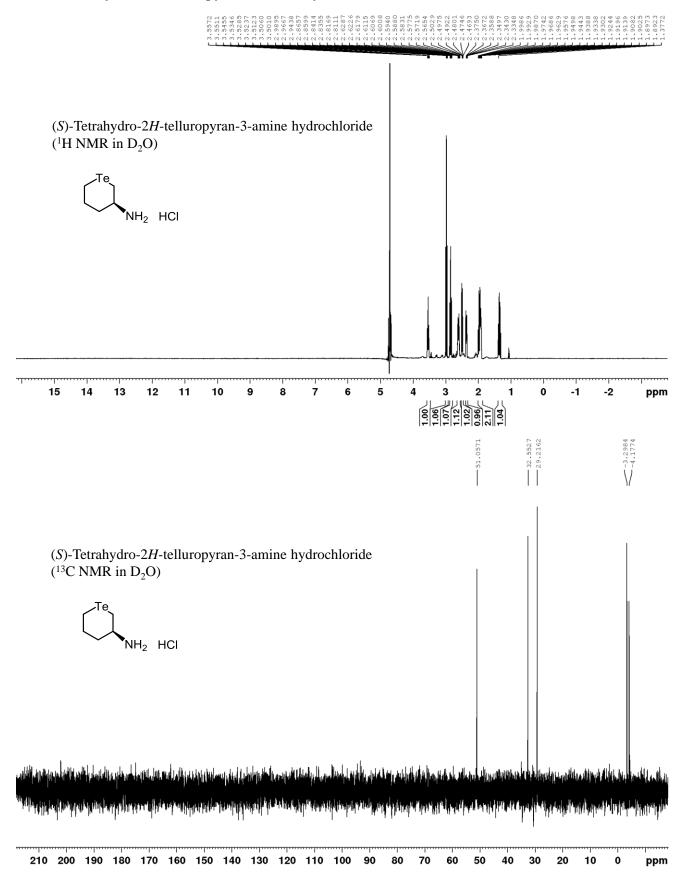

Fig. S5 Effect of H_2O_2 concentration on GPx-like activity in buffer solution.	30
Fig. S6 GPx-like activity coupled with oxidation of benzenethiol (15a) in $CHCl_3$.	31
Fig. S7 Effect of CHP concentration on GPx-like activity in CHCl ₃	32
Fig. S8 ¹ H NMR spectra obtained from aerial oxidation experiments of 15e by using cyclic telluride catalysts.	33
Fig. S9 Residence time effect on the catalytic oxidation of 15b in a segmented-microflow system.	34
Fig. S10 Isolated yield of 16e during five reuse of telluride catalysts 4–6.	34
Fig. S11 Isolated yield of 16r during six consecutive cycles of catalyst 7.	35
Fig. S12 Cytotoxicity of compounds 4–6 at different concentrations determined by MTT assay with HeLa cells.	36
Fig. S13 Schematic and photographs of flow setup for the oxidation of fat-soluble thoils.	37
Fig. S14 Schematic of flow setup for the oxidation of water-soluble thiols.	38
Table S1 Catalytic oxidation of thiols in a biphasic organic-aqueous system under batch condition	39
Table S2 Optimization of tubing ID of microflow channel.	40
Table S3 Catalytic oxidation of thiols in a biphasic organic-aqueous system under a batch or segmented microflow condition.	41

3. References

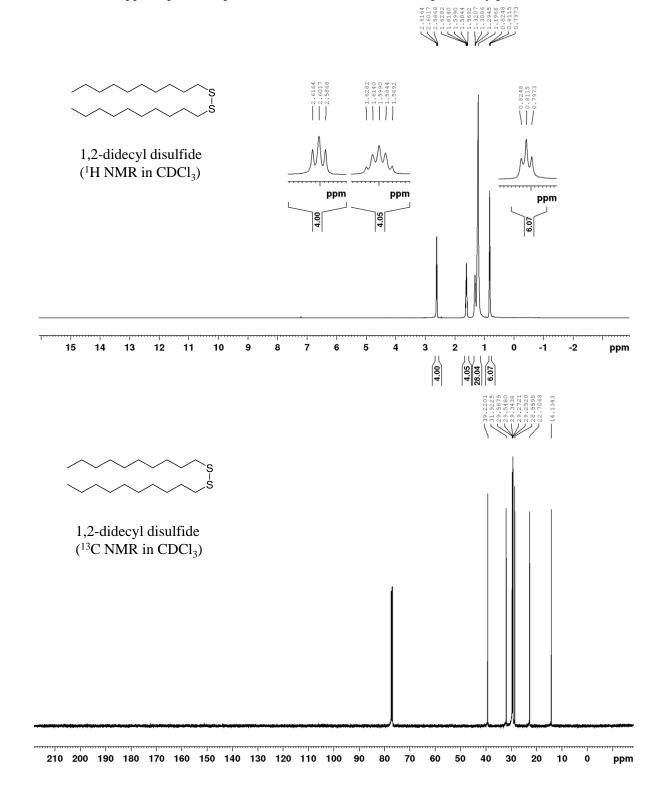

....42

1. NMR spectra

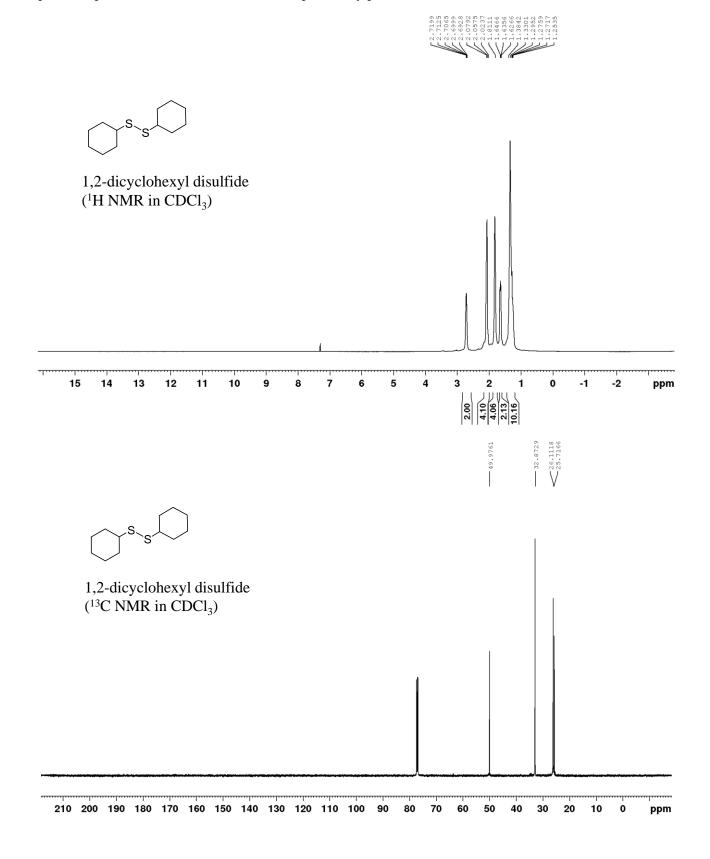

1.1 *tert*-Butyl (*S*)-(tetrahydrotellurophen-3-yl)carbamate (**7**)


1.2 *tert*-Butyl (*S*)-(tetrahydro-2H-telluropyran-3-yl)carbamate (**8**)

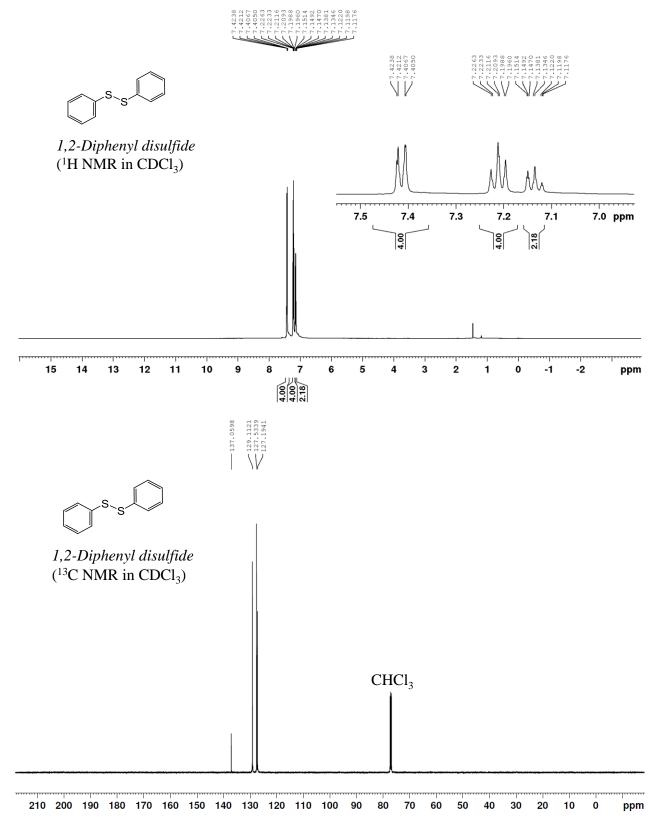
1.3 (S)-Tetrahydrotellurophen-3-amine hydrochloride (4)


1.4 (S)-Tetrahydro-2H-telluropyran-3-amine hydrochloride (5)

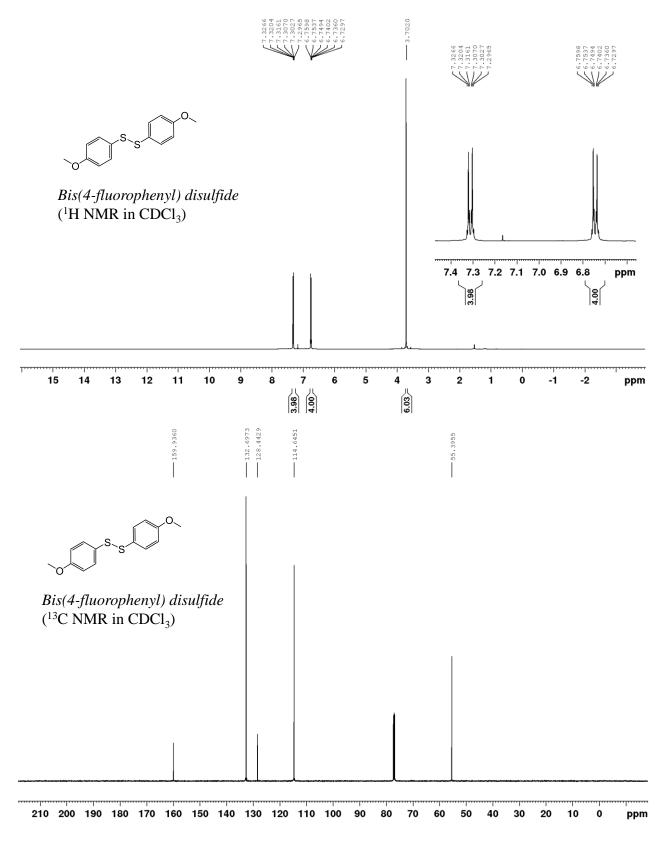
1.5 NMR spectra of disulfides (**16a–t**)


1,2-Didecyl disulfide (**16a**)

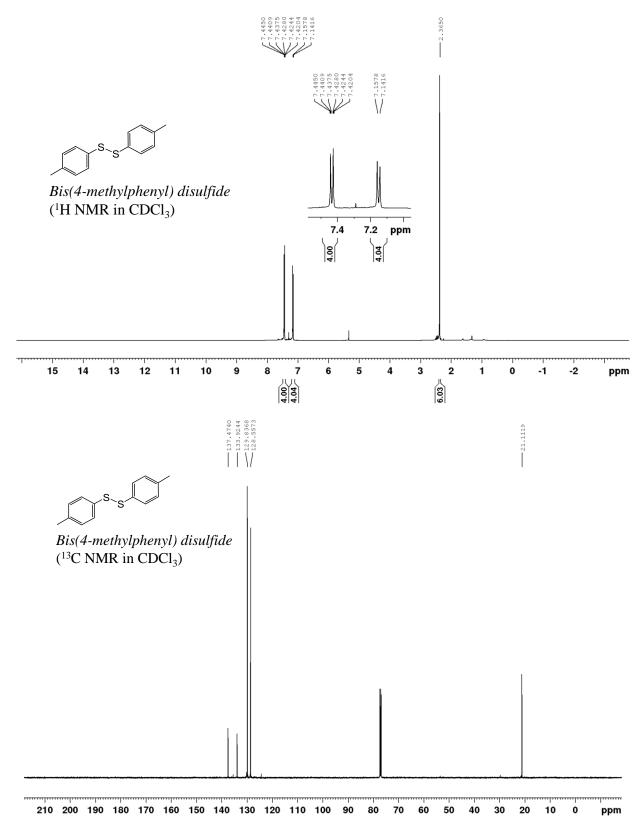
Colorless oil; Yield in batch: 38.7 mg (99%) and 38.5 mg (98%) using **4** and **6**, respectively; Yield in flow: 39.4 mg (quant.) using **4**; ¹H NMR (CDCl₃): $\delta = 2.60$ (t, J = 7.4 Hz, 4H), 1.63–1.57 (m, 4H), 1.32–1.20 (m, 28H), 0.81 ppm (t, J = 6.7 Hz, 4H); ¹³C NMR (CDCl₃): $\delta = 39.22$, 31.92, 29.59, 29.55, 29.34, 29.27, 29.25, 28.56, 22.71, 14.13 ppm. Spectroscopic data are in accordance with the previously presented.¹


1,2-dicyclohexyl disulfide (**16b**)

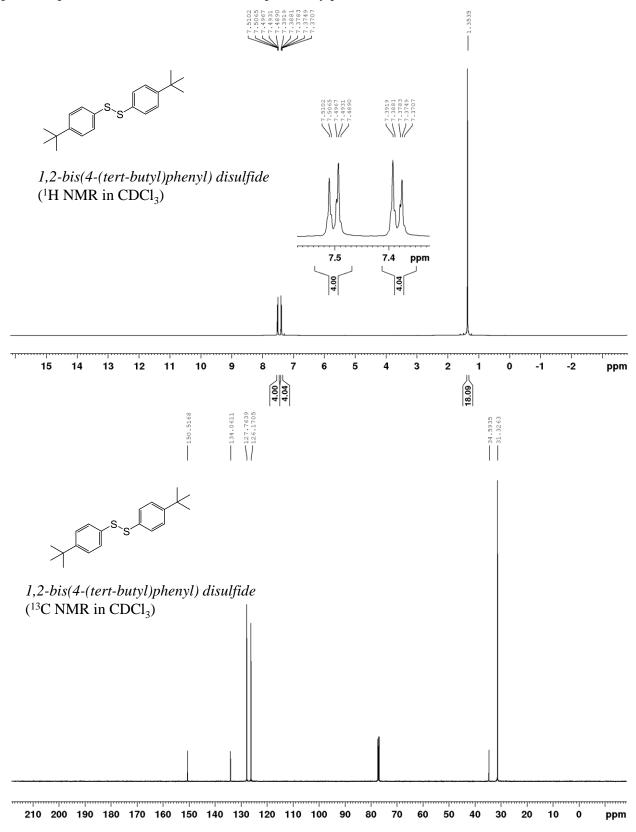
Colorless oil; Yield in batch: 26.1 mg (99%) and 25.4 mg (96%) using **4** and **6**, respectively; Yield in flow: 25.9 mg (quant.) using **4**, respectively; ¹H NMR (CDCl₃): $\delta = 2.72-2.69$ (m, 2H), 2.08–2.02 (m, 4H), 1.84–1.77 (m, 4H), 1.65–1.63 (m, 2H), 1.38–1.25 ppm (m, 10H); ¹³C NMR (CDCl₃): $\delta = 50.0, 32.9, 26.1, 25.7$ ppm. Spectroscopic data are in accordance with the previously presented.²


1,2-Diphenyl disulfide (16c)

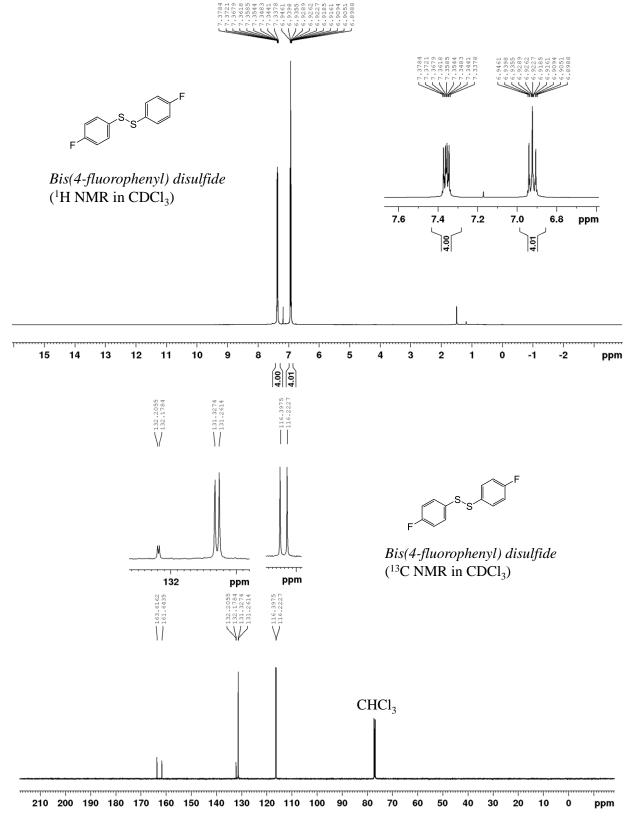
White solid; Yield in batch: 23.4 mg (95%) and 29.3 mg (quant.) using **4** and **6**; Yield in flow: 23.6 mg (95%) and 23.9 mg (96%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.42-7.41$ (m, 4H), 7.22–7.20 (m, 4H), 7.15–7.12 ppm (m, 2H); ¹³C NMR (CDCl₃): $\delta = 137.1$, 129.1, 127.5, 127.2 ppm. Spectroscopic data are in accordance with the previously presented.³


Bis(4-methoxyphenyl) disulfide (16d)

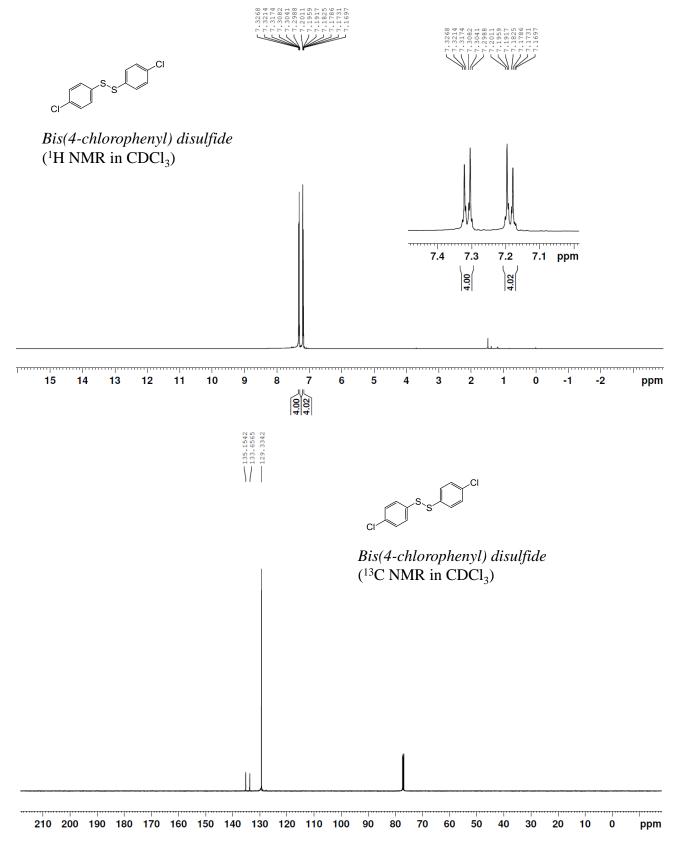
Off yellow oil; Yield in batch: 35.5 mg (quant.) and 30.4 mg (97%) using **4** and **6**, respectively; Yield in flow: 32.0 mg (quant.) and 30.4 mg (97%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.32-7.30$ (m, 4H), 6.76–6.73 (m, 4H), 3.70 ppm (s, 6H); ¹³C NMR (CDCl₃): $\delta = 159.9$, 132.7, 128.4, 114.6, 55.4 ppm. Spectroscopic data are in accordance with the previously presented.³


Bis(4-methylphenyl) disulfide (16e)

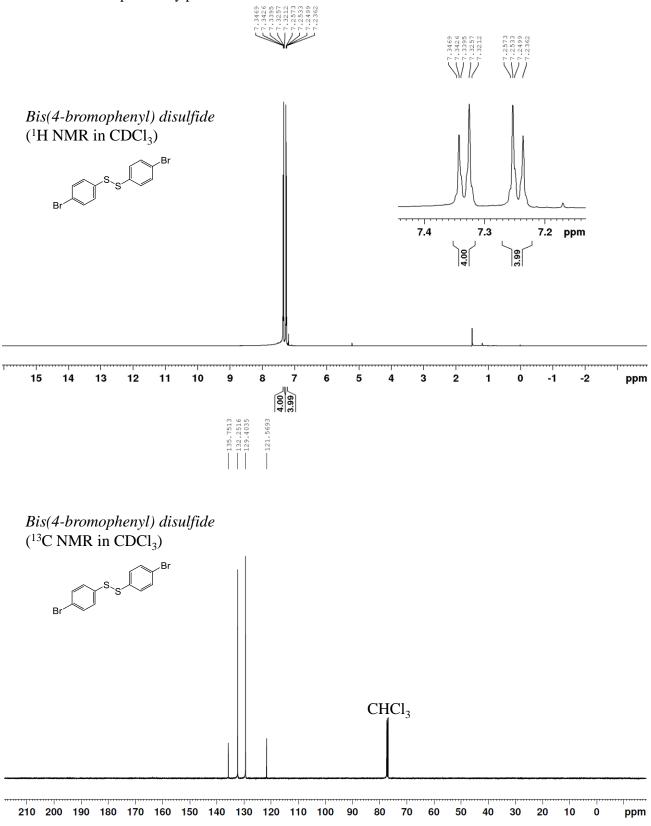
White solid; Yield in batch: 27.3 mg (98%) and 29.2 mg (quant.) using **4** and **6**, respectively; Yield in flow: 27.1 mg (97%) and 27.2 mg (97%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): δ = 7.44–7.14 (m, 4H), 7.15 (d, J = 8.1, Hz, 4H), 2.37 ppm (s, 6H); ¹³C NMR (CDCl₃): δ = 137.5, 133.9, 129.8, 128.6, 21.1 ppm. Spectroscopic data are in accordance with the previously presented.¹


1,2-bis(4-(tert-butyl)phenyl) disulfide (16f)

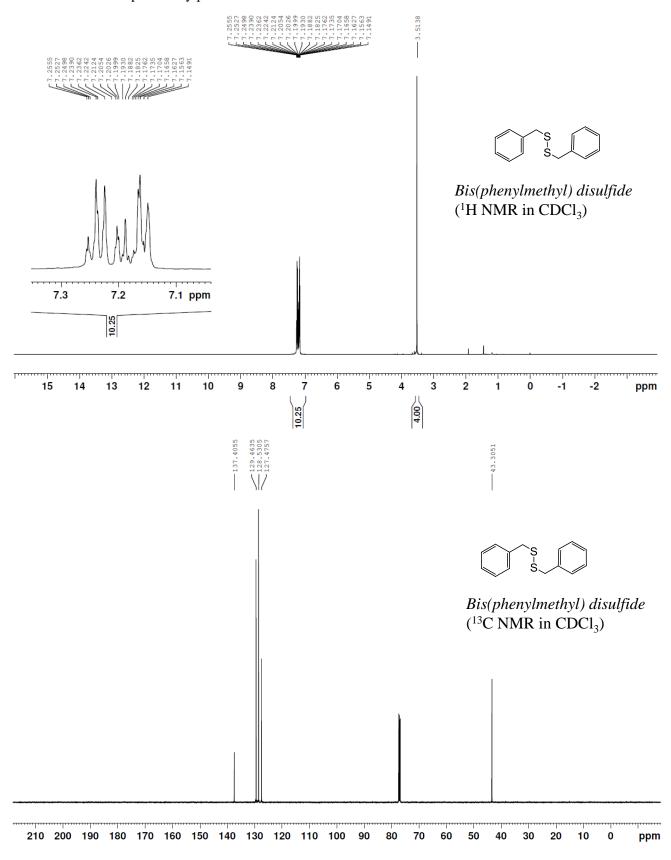
White solid; Yield in batch: 37.4 mg (quant.) and 35.9 mg (96%) using **4** and **6**, respectively; Yield in flow: 37.6 mg (quant.) and 34.8 mg (93%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): δ = 7.51–7.49 (m, 4H), 7.39–7.37 (m, 4H), 1.35 ppm (m, 18H); ¹³C NMR (CDCl₃): δ = 150.5, 134.1, 127.8, 126.2, 34.6, 31.3 ppm. Spectroscopic data are in accordance with the previously presented.⁴


Bis(4-fluorophenyl) disulfide (16g)

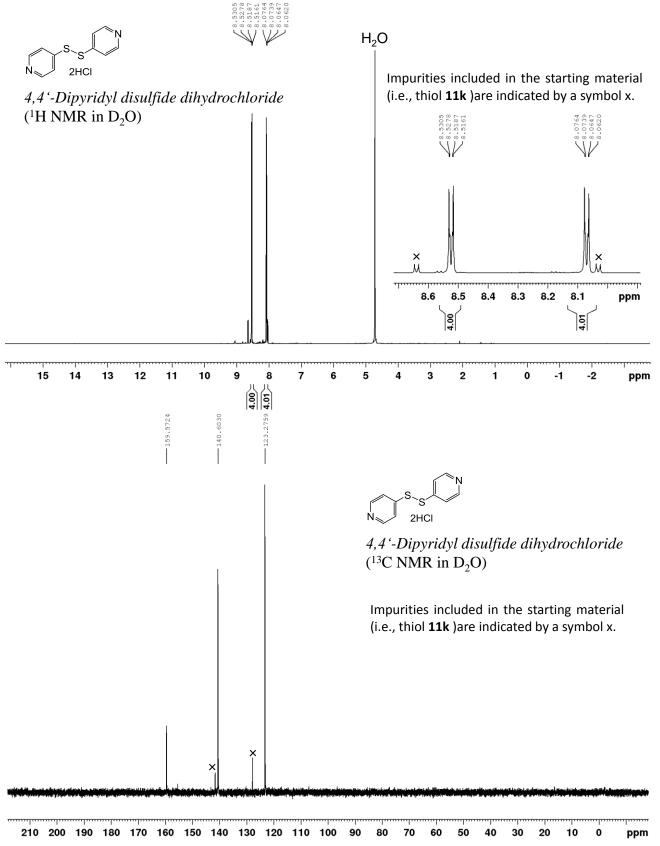
Colorless oil; Yield in batch: 29.0 mg (quant.) and 28.2 mg (99%) using **4** and **6**, respectively, respectively; Yield in flow: 29.0 mg (quant.) and 27.9 mg (97%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.38-7.34$ (m, 4H), 6.95–6.90 (m, 4H); ¹³C NMR (CDCl₃): $\delta = 163.62$, 161.64, 132.19 (d, J = 3.4 Hz), 131.30 (d, J = 8.8 Hz), 116.31 ppm (d, J = 22.6 Hz). Spectroscopic data are in accordance with the previously presented.¹


Bis(4-chlorophenyl) disulfide (16h)

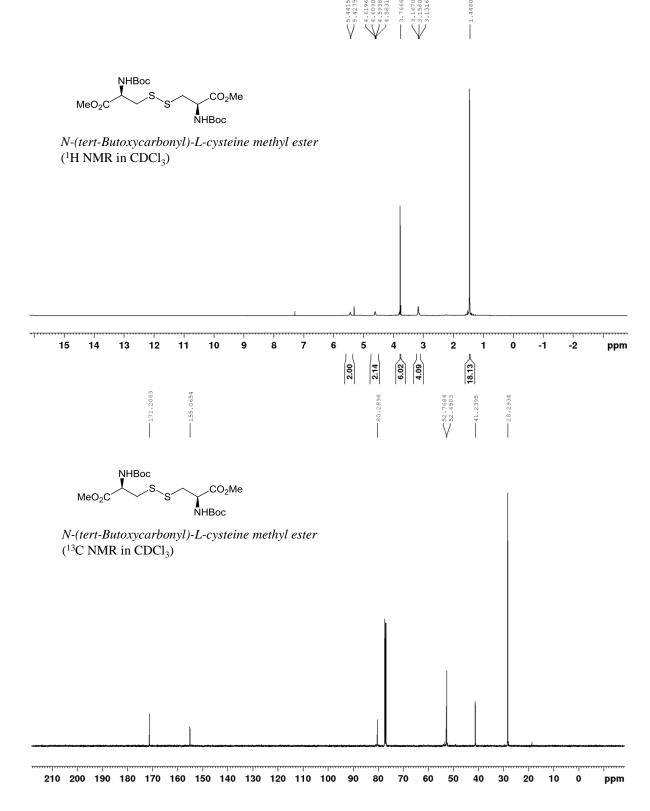
White solid; Yield in batch: 33.5 mg (quant.) and 34.6 mg (quant.) using **4** and **6**, respectively; Yield in flow: 31.5 mg (97%) and 31.0 mg (95%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.33-7.30$ (m, 4H), 7.20–7.17 ppm (m, 4H); ¹³C NMR (CDCl₃): $\delta = 135.2$, 133.7, 129.3 ppm. Spectroscopic data are in accordance with the previously presented.¹


Bis(4-bromophenyl) disulfide (16i)

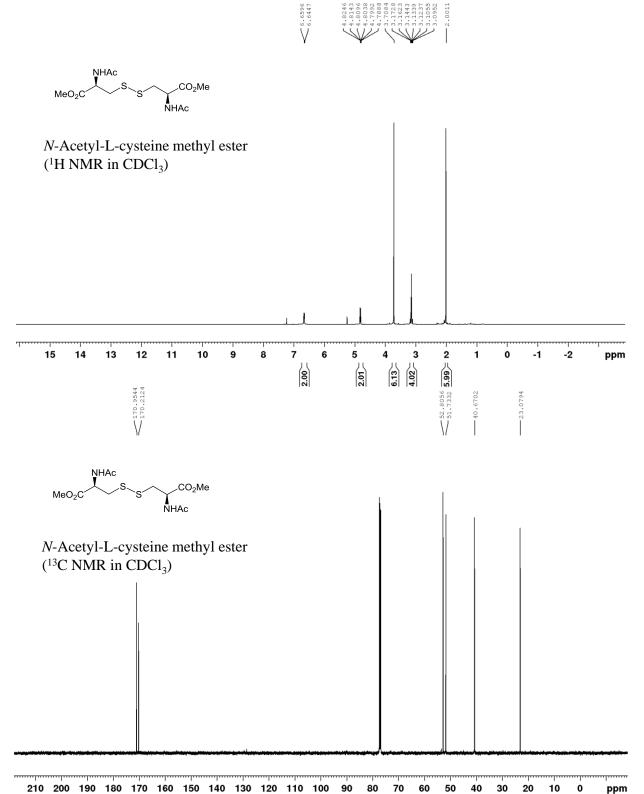
White solid; Yield in batch: 43.2 mg (quant.) and 41.1 mg (97%) using **4** and **6**, respectively; Yield in flow: 41.9 mg (99%) and 41.7 mg (98%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.35-7.32$ (m, 1H), 7.25–7.24 ppm (m, 1H); ¹³C NMR (CDCl₃): $\delta = 135.8$, 132.3, 129.4, 121.6 ppm. Spectroscopic data are in accordance with the previously presented.¹


Bis(phenylmethyl) disulfide (16j)

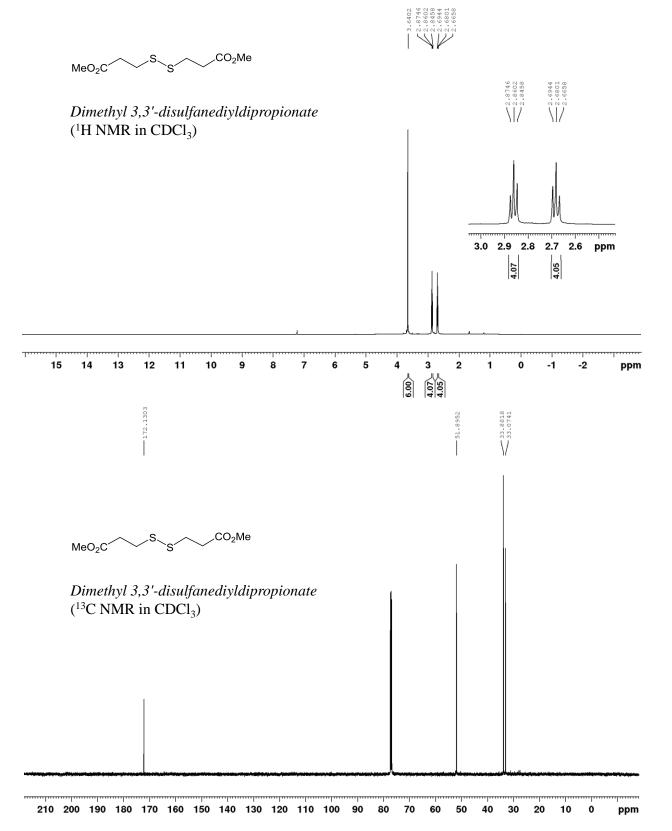
White solid; Yield in batch: 26.3 mg (97%) and 29.3 mg (quant.) using **4** and **6**, respectively; Yield in flow: 27.5 mg (99%) and 27.5 mg (99%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 7.26-7.15$ (m, 10H), 3.51 ppm (s, 4H); ¹³C NMR (CDCl₃): $\delta = 137.4$, 129.5, 128.5, 127.5, 43.3 ppm. Spectroscopic data are in accordance with the previously presented.¹


4,4'-Dipyridyl disulfide dihydrochloride (**16k**)

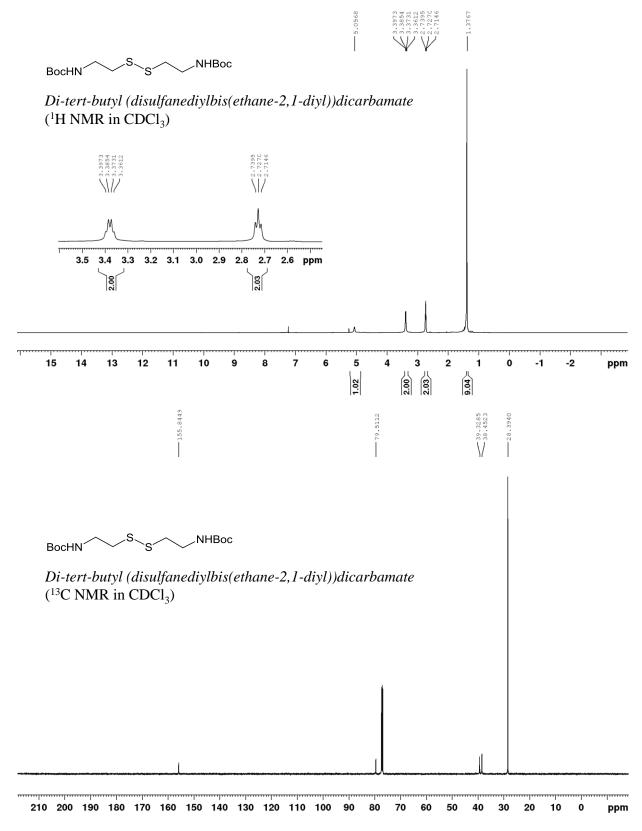
Off yellow solid; Yield in batch: 33.5 mg (quant.) using **7**; Yield in flow: 33.3 mg (quant.) using **7**; ¹H NMR (D₂O): $\delta = 8.53-8.52$ (m, 4H), 8.08–8.06 ppm (m, 4H); ¹³C NMR (D₂O): $\delta = 159.6$, 140.6, 123.3 ppm. HRMS (ESI+): m/z calcd for C₁₀H₉N₂S₂⁺: 221.0202 [M+H–2HCl]⁺; found: 221.0205.


N-(tert-Butoxycarbonyl)-L-cysteine methyl ester (**16***l*)

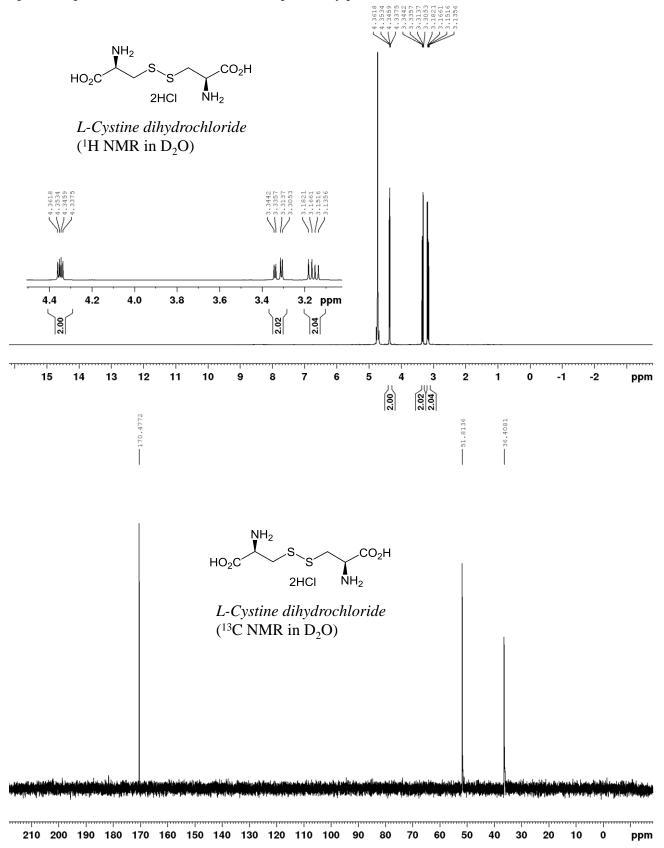
Colorless oil; Yield in batch: 54.2 mg (quant.) and 47.1 mg (89%) using **4** and **6**, respectively; Yield in flow: 50.7 mg (96%) and 51.2 mg (97%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 5.43$ (br d, J = 7.0 Hz, 2H), 4.62–4.58 (m, 2H), 3.77 (s, 6H), 3.17–3.13 (m, 4H), 1.45 ppm (s, 18H); ¹³C NMR (CDCl₃): $\delta = 171.2$, 155.1, 80.3, 52.8, 52.7, 41.2, 28.3 ppm; LRMS (APCI+): m/z calcd for C₁₈H₃₃N₂O₈S₂⁺: 469.17 [M+H]⁺; found: 469.19. Spectroscopic data are in accordance with the previously presented.⁵


N-Acetyl-L-cysteine methyl ester (**16m**)

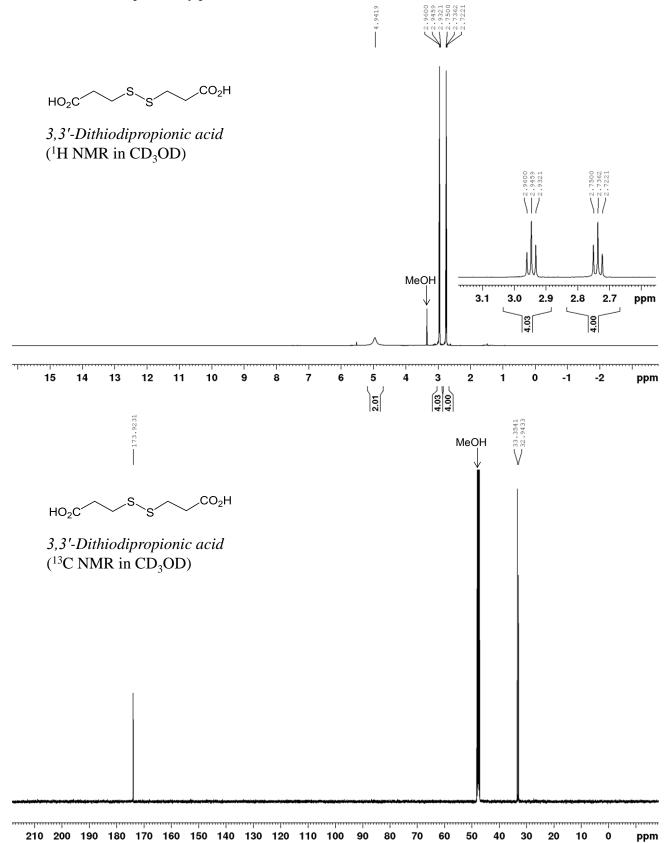
White solid; Yield in batch: 28.6 mg (72%) and 30.9 mg (78%) using **4** and **6**, respectively; Yield in flow: 28.5 mg (71%) and 27.0 mg (68%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 6.65$ (d, J = 7.45 Hz, 2H), 4.82–4.79 (m, 2H), 3.71 (s, 6H), 3.17–3.10 (m, 4H), 2.00 ppm (s, 6H); ¹³C NMR (CDCl₃): $\delta = 170.9$, 170.2, 52.8, 51.7, 40.7, 23.1 ppm; LRMS (APCI+): m/z calcd for C₁₂H₂₁N₂O₆S₂⁺: 353.08 [M+H]⁺; found: 353.10.⁶


Dimethyl 3,3'-disulfanediyldipropionate (**16n**)

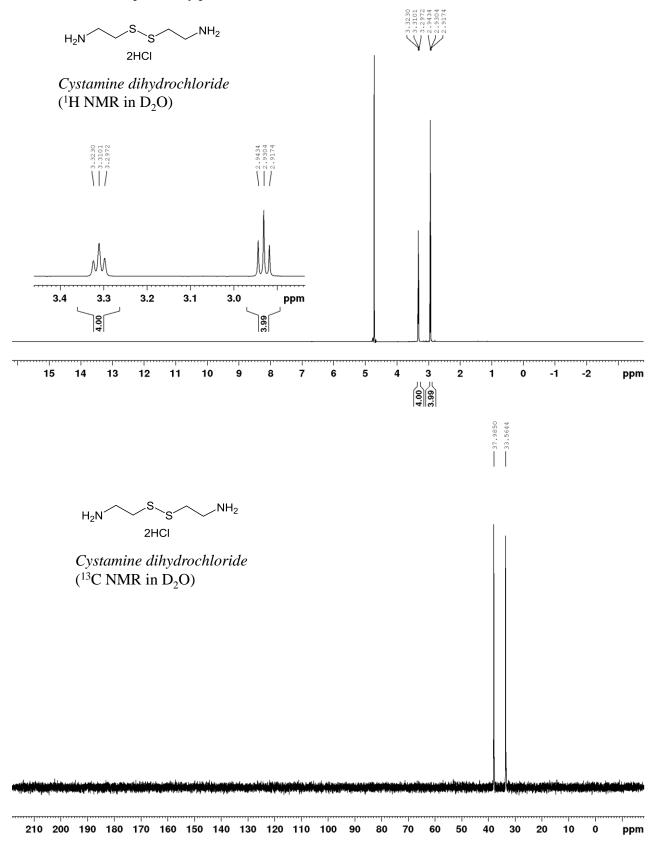
Colorless liquid; Yield in batch: 26.6 mg (92%) and 21.5 mg (79%) using **4** and **6**, respectively; Yield in flow: 26.4 mg (98%) and 27.5 mg (quant) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 3.64$ (s, 6H), 2.86 (t, *J* = 7.2 Hz, 4H), 2.68 ppm (t, *J* = 7.2 Hz, 4H); ¹³C NMR (CDCl₃): $\delta = 172.1$, 51.9, 33.9, 33.1 ppm; LRMS (APCI+): m/z calcd for C₈H₁₅O₄S₂⁺: 239.04 [M–H]⁺; found: 239.04. Spectroscopic data are in accordance with the previously presented.⁷


Di-tert-butyl (disulfanediylbis(ethane-2,1-diyl))dicarbamate (160)

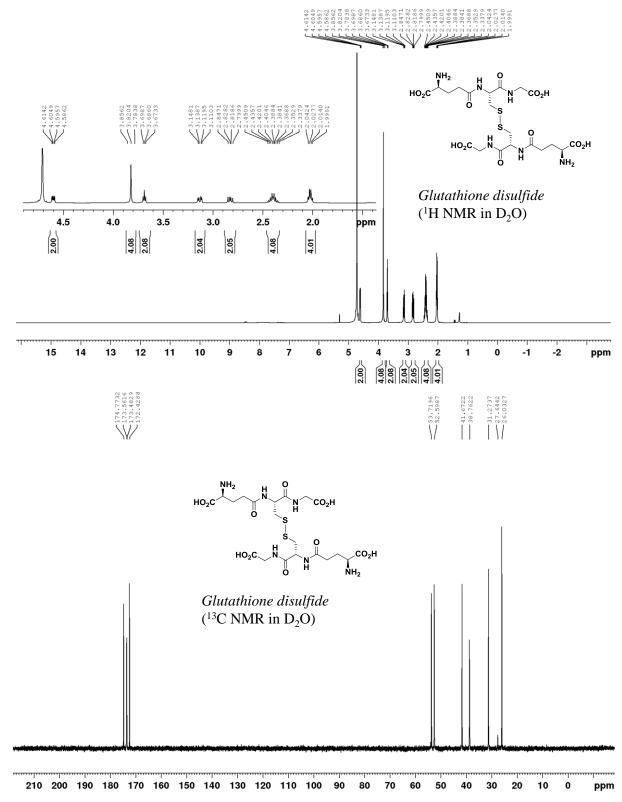
White solid; Yield in batch: 38.5 mg (95%) and 31.5 mg (80%) using **4** and **6**, respectively; Yield in flow: 37.0 mg (93%) and 37.2 mg (93%) using **4** and **5**, respectively; ¹H NMR (CDCl₃): $\delta = 5.06$ (br s, 2H), 3.38 (q, J = 6.0 Hz, 4H), 2.73 (t, J = 6.3 Hz, 4H), 1.38 (s, 18H) ppm; ¹³C NMR (CDCl₃): $\delta = 155.8$, 79.5, 39.3, 38.5, 28.4 ppm; LRMS (APCI+): m/z calcd for C₁₄H₂₉N₂O₄S₂⁺: 353.16 [M–H]⁺; found: 353.15. Spectroscopic data are in accordance with the previously presented.⁸


L-Cystine dihydrochloride (**16p**)

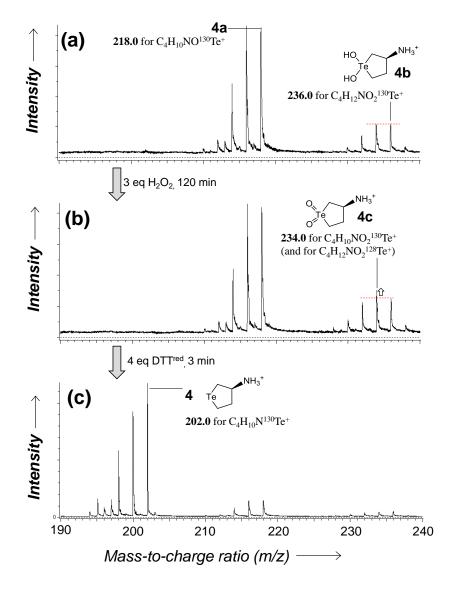
White solid; Yield in batch: 33.2 mg (94%); Yield in flow: 35.5 mg (quant.); ¹H NMR (D₂O): δ = 4.35 (dd, *J* = 4.2, 8.0 Hz, 2H), 3.32 (dd, *J* = 4.3, 15.2 Hz, 2H), 3.16 ppm (dd, *J* = 8.0, 15.3 Hz, 2H); ¹³C NMR (D₂O): δ = 170.5, 51.8, 36.4 ppm; LRMS (APCI+): m/z calcd for C₆H₁₃N₂O₄S₂⁺: 241.03 [M+H–2HCl]⁺; found: 241.06. Spectroscopic data are in accordance with the previously presented.⁹


3,3'-Dithiodipropionic acid (**16q**)

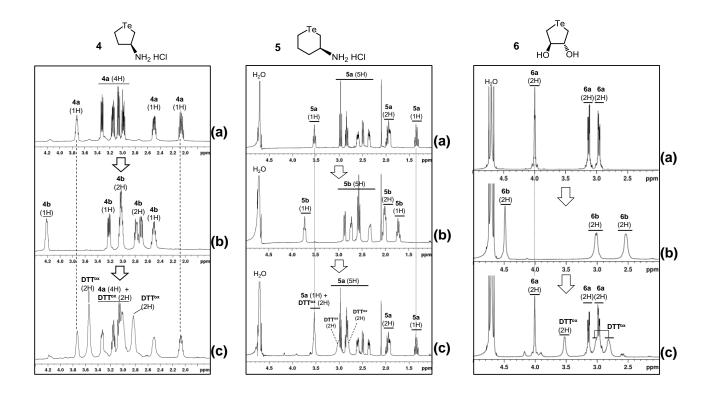
White solid; Yield in batch: 23.2 mg (98%); Yield in flow: 23.1 mg (98%); ¹H NMR (CD₃OD): δ = 4.94 (br s, 1H), 2.95 (t, *J* = 7.1 Hz, 4H), 2.74 ppm (t, *J* = 6.9 Hz, 4H); ¹³C NMR (CD₃OD): δ = 173.9, 33.4, 32.9 ppm; LRMS (APCI–): m/z calcd for C₆H₉O₄S₂⁻: 208.99 [M–H]⁺; found: 208.98. Spectroscopic data are in accordance with the previously presented.¹⁰

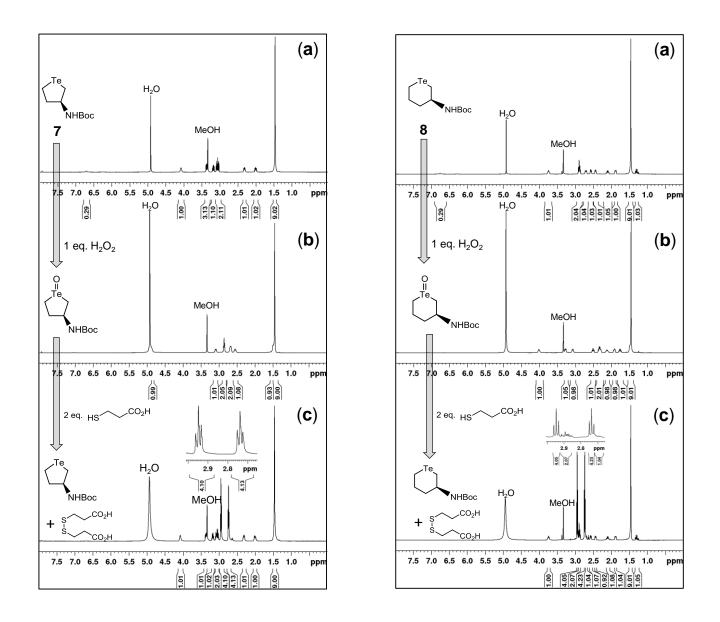

Cystamine dihydrochloride (16r)

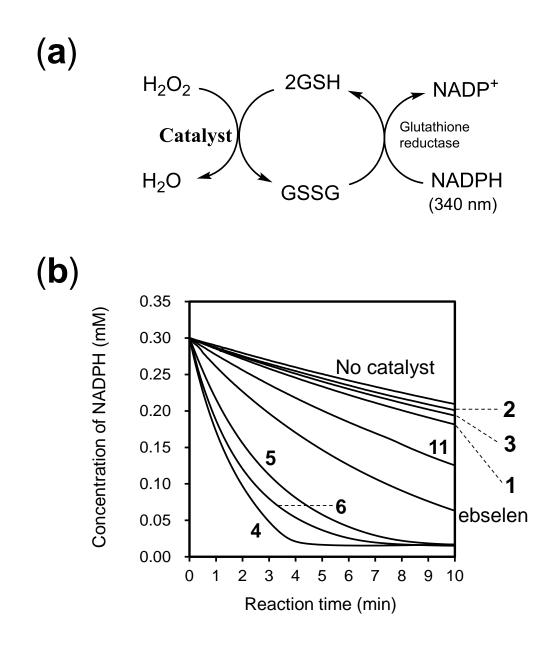
White solid; Yield in batch: 24.3 mg (96%); Yield in flow: 25.4 mg (quant.); ¹H NMR (D₂O): δ = 3.31 (t, *J* = 6.5 Hz, 2H), 2.92 (t, *J* = 6.5 Hz, 2H), 2.68 ppm (t, *J* = 7.2 Hz, 4H); ¹³C NMR (CDCl₃): δ = 38.0, 33.6 ppm; LRMS (APCI+): m/z calcd for C₄H₁₃N₂S₂⁺: 153.05 [M+H–2HCl]⁺; found: 153.05. Spectroscopic data are in accordance with the previously presented.¹¹

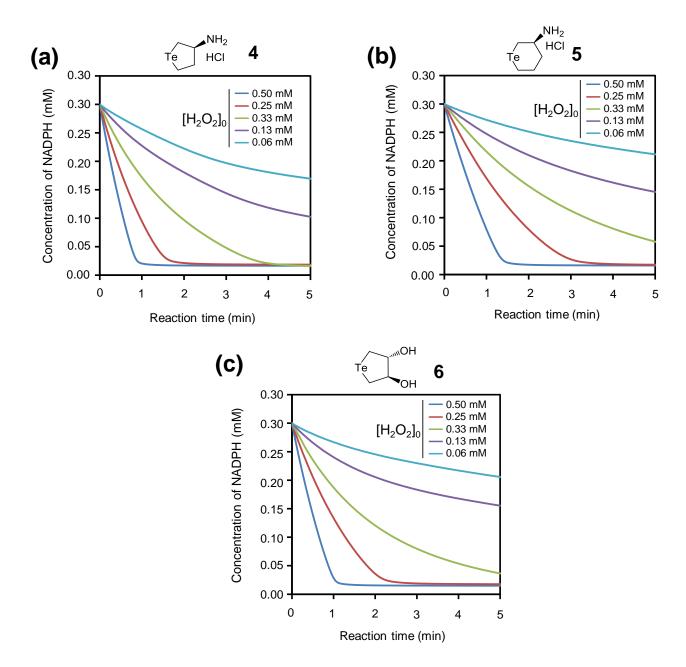


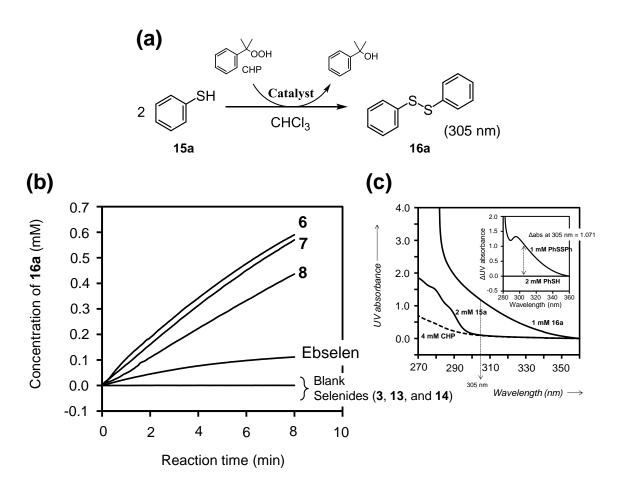
Glutathione disulfide (**16s**)

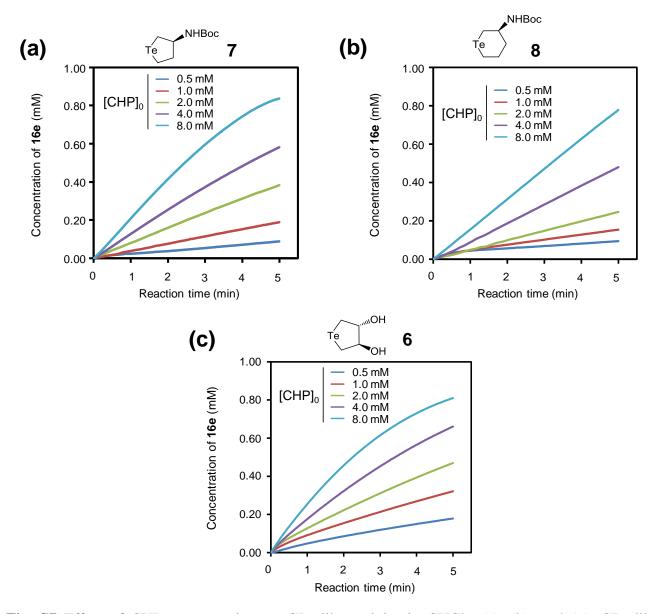

White solid; Yield in batch: 69.7 mg (quant.); Yield in flow: 69.0 mg (quant.); in a flow system; ¹H NMR (D₂O): $\delta = 4.60$ (dd, J = 4.65, 9.35 Hz, 2H), 3.86–3.78 (m, 4H), 3.69 ppm (t, J = 5.9 Hz, 2H), 3.13 ppm (dd, J = 4.7, 14.2 Hz, 2H), 2.84–2.80 ppm (m, 2H), 2.45–2.34 ppm (m, 4H), 2.04–2.00 ppm (m, 4H); ¹³C NMR (D₂O): $\delta = 174.7$, 173.6, 173.5, 172.4, 53.7, 52.6, 41.7, 38.8, 31.3, 27.6, 26.0 ppm; LRMS (APCI +): m/z calcd for C₂₀H₃₃N₆O₁₂S₂⁺: 613.16 [M+H]⁺; found: 613.23. Spectroscopic data are in accordance with the previously presented.⁹

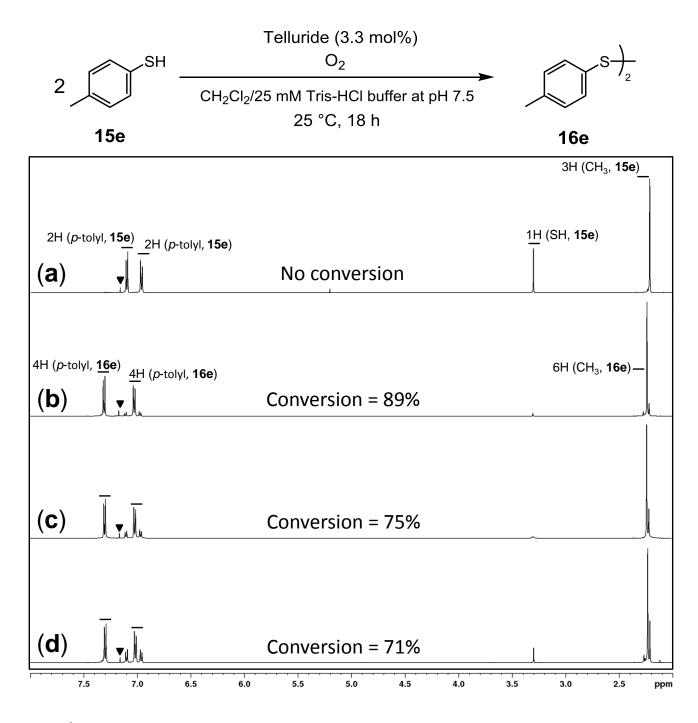

2. Supplemental Figures and Tables

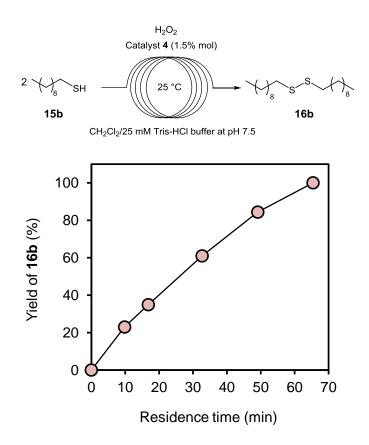

Fig. S1 ESI(+)-MS spectral changes upon the oxidation and subsequent reduction of **4** in H₂O at 25 °C. Reaction conditions: (**a**) **4** (0.47 μ mol) and H₂O₂ (0.47 μ mol) were mixed in H₂O. (**b**) to **a** was added H₂O₂ (1.41 μ mol); (**c**) to **b** was added DTT^{red} (1.88 μ mol).

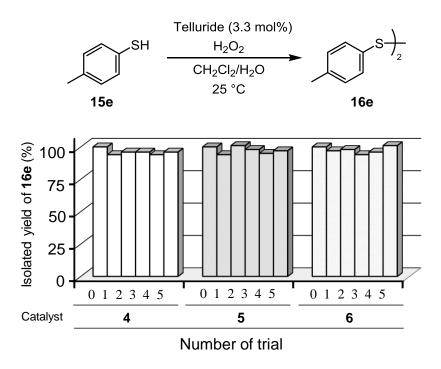

Fig. S2 ¹H NMR spectral changes upon oxidation and subsequent reduction of tellurides in D₂O at 25 °C. **Left panel:** (a), **4** (24 µmol) in D₂O (500 µL); (b), (a) + H₂O₂ (24 µmol); (c), (b) + DTT^{red} (24 µmol). **Middle panel:** (a), **5** (24 µmol) in D₂O (500 µL); (b), (a) + H₂O₂ (24 µmol); (c), (b) + DTT^{red} (24 µmol). **Right panel:** (a), **6** (24 µmol) in D₂O (500 µL); (b), (a) + H₂O₂ (24 µmol); (c), (b) + DTT^{red} (24 µmol). All sample solutions were incubated for 5 min at 25°C before the NMR measurements.

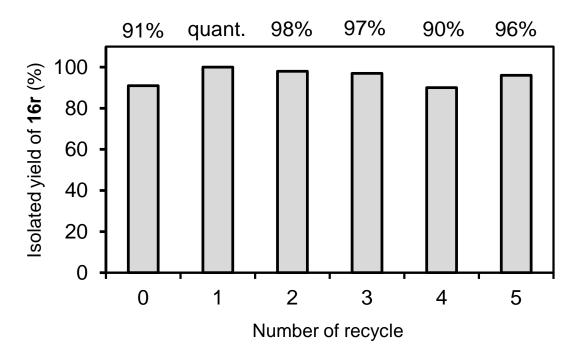

Fig. S3 ¹H NMR spectral changes upon oxidation and subsequent reduction of tellurides **7** and **8** in CD₃OD at 25 °C. **Left panel:** (a), **7** (23.4 µmol) in CD₃OD (550 µL); (b), (a) + H₂O₂ (23.4 µmol); (c), (b) + 3-mercaptopropionic acid (46.8 µmol). **Right panel:** (a), **8** (24 µmol) in CD₃OD (550 µL); (b), (a) + H₂O₂ (24 µmol); (c), (b) + 3-mercaptopropionic acid (48 µmol). All sample solutions were incubated for 5 min at 25°C before the NMR measurements.


Fig. S4 (a) GPx-like activity coupled with reduction of GSSG by NADPH in the presence of glutathione reductase (GR). (b) GPx-like activity assay for selenides **1–3**, tellurides **4–6**, and ebselen. Reaction conditions were $[GSH]_0 = 4 \text{ mM}$, $[H_2O_2]_0 = 0.25 \text{ mM}$, $[NADPH]_0 = 0.3 \text{ mM}$, [GR] = 4 units/mL, and $[catalyst] = 25 \mu \text{M}$ in pH 7.2 phosphate buffer at 25 °C.


Fig. S5 Effect of H₂O₂ concentration on GPx-like activity. (a)–(c): GPx-like activity assay for tellurides **4–6**. Reaction conditions were $[GSH]_0 = 4 \text{ mM}$, $[H_2O_2]_0 = 0.06-0.25 \text{ mM}$, $[NADPH]_0 = 0.3 \text{ mM}$, [GR] = 4 units/mL, and $[catalyst] = 25 \mu \text{M}$ in pH 7.2 phosphate buffer at 25 °C.


Fig. S6 (a) GPx-like activity coupled with oxidation of benzenethiol (**16a**) in CHCl₃. (b) GPx-like activity assay for selenides **3**, **13**, and **14**, tellurides **6–8**, and ebselen. Reaction conditions were $[15a]_0 = 2 \text{ mM}$, [CHP]_0 = 2 mM, [catalyst] = 0.04 mM in CHCl₃ at 25 °C. (c) UV spectra and the UV differential spectra of **15a** (2 mM) and **16a** (1 mM) in CHCl₃.


Fig. S7 Effect of CHP concentration on GPx-like activity in CHCl₃. (a), (b), and (c): GPx-like activity assay for tellurides **7**, **8**, and **6**, respectively. Reaction conditions were $[15a]_0 = 2$ mM, $[CHP]_0 = 0.5-8.0$ mM, and [catalyst] = 0.04 mM in CHCl₃ at 25 °C.


Fig. S8 ¹H NMR spectra obtained from aerial oxidation experiments of **15e** by using cyclic telluride catalysts. Reaction conditions: **15e** (0.23 mmol) and catalyst (3.3 mol%, 7.6 μ mol) in CH₂Cl₂ (4 mL)/water (4 mL) at 25 °C for 18 h in the absence (a) or presence of telluride **4** (b), **5** (c), or **6** (d).

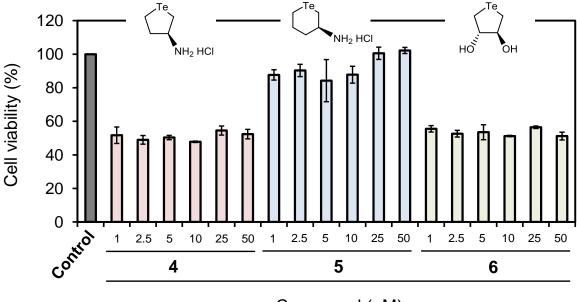

Fig. S9 Residence time effect on the catalytic oxidation of **15b** in a segmented-microflow system. Reaction conditions: **15b** (0.23 mmol), H₂O₂ (0.23 mmol), and catalyst (3.45 μ mol) in CH₂Cl₂/25 mM Tris-HCl buffer solution at pH 7.5 (1:1 = v/v) at 25 °C. The yields were estimated by ¹H NMR.

Fig. S10 Isolated yield of **16e** during recycle of telluride catalysts **4–6** in five times. Reaction conditions: **15e** (0.23 mmol), H_2O_2 (0.23 mmol), and catalyst (7.6 µmol) in CH₂Cl₂ (4 mL) and H_2O_2 (4 mL) at 25 °C for 180 min. The reaction was progressed with vigorously stirring.

Fig. S11. Isolated yield of **16r** during six consecutive cycles of catalyst **7**. Reaction conditions: **15r** (0.23 mmol), H_2O_2 (0.23 mmol), and catalyst (7.6 µmol) in CH_2Cl_2 (4 mL) and H_2O_2 (4 mL) at 25 °C for 6 h. The reaction was progressed with vigorously stirring.

Compound (µM)

Fig. S12. Cytotoxicity of compounds **4–6** at different concentrations determined by MTT assay with HeLa cells. HeLa cells $(1 \times 10^4 \text{ cell/well})$ was cultured for 4 h in the presence of compounds **4–6** $(1-50 \ \mu\text{M})$ at 37 °C and 5% CO₂. Bars are shown as means ±SEM (*n*=4).

Experimental: Each well in a 96-well plate was seeded with HeLa cells $(1 \times 10^{-4} \text{ cells/well})$ in Dulbecco's Modified Eagle's Medium supplemented with 5% fetal bovine serum. After culturing in a humidified incubator at 37 °C with 5% CO₂ for 24 h, the cells were treated with 1–50 µM of compounds 4–6 in medium (100 µL) without fetal bovine serum and incubated for 4 h at 37 °C with 5% CO₂. The medium was then removed, and the cells were washed with phosphate-buffered saline. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (100 µL, 0.5 mg/mL in medium) was then added, and the cells were incubated for 4 h at 37 °C with 5% CO₂. MTT solution was then removed and dimethyl sulfoxide (100 µL) was added to each well to dissolve the formazan crystals, and the cells were incubated at 25 °C with shaking at 350 rpm. The absorbance at 530 nm was measured using a microplate reader. The control cells, which were treated with the medium containing no compound, were assumed to be 100% viable. The percentage viability of the treated cells was calculated from eq. (1).

$$\% viability = \frac{Abs_{sample}^{535} - Abs_{blank}^{535}}{Abs_{control}^{530} - Abs_{blank}^{530}}.$$
 ...(1)

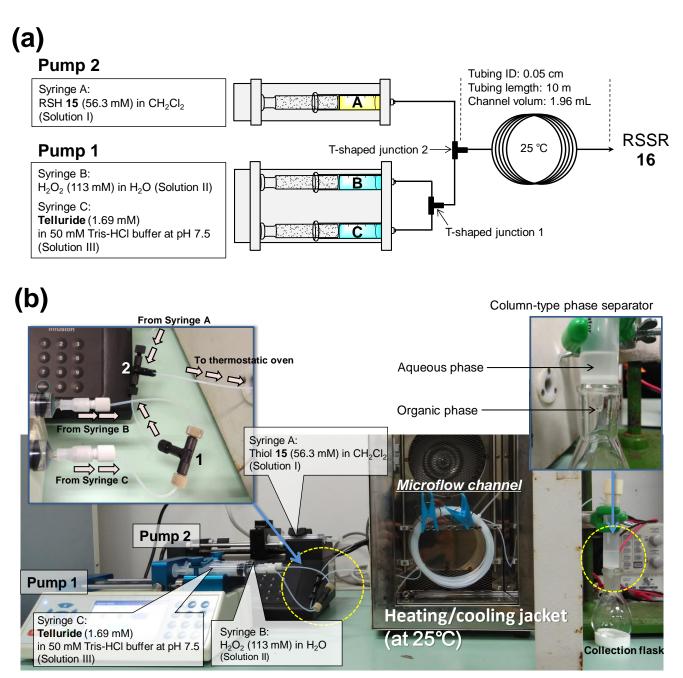
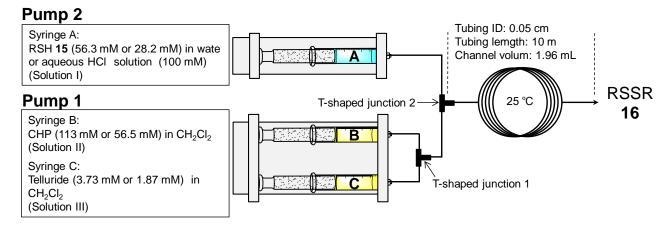


Fig. S13 Schematic (a) and photographs (b) of flow setup for the oxidation of fat-soluble thoils.

Note: Plastic T-shape junctions were purchased from EYELA. (Inner diameter: 0.5 mm). Teflon[®] tubes (ID = 0.5 mm) and PEEK fittings were purchased from GL Science Co., Ltd. Solutions were introduced to microflow channels with syringe pumps (Pump 1: Fusion Touch 100 from ISIS Co., Ltd and Pump 2: PHD 2000 syringe pump infusion 100 from Harvard apparatus) equipped disposable plastic syringes which include no rubber in the material.



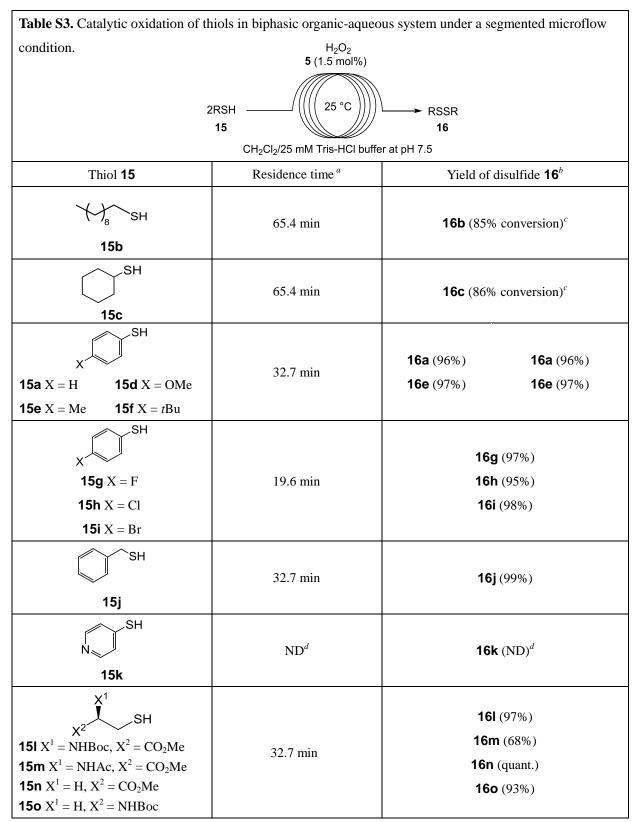

Fig. S14 Schematic of flow setup for the oxidation of water-soluble thiols.

Table S1. Catalytic oxidation of	thiols in a biphasi	c organic-aqueous s	system under a batch	n condition.
2RSH ·		H ₂ O ₂ Iyst (3.3%mol)		
	$\begin{array}{c c} & & \\ \hline & \\ CH_2Cl_2/25 \text{ mM Tris-HCl pH 7.5 buffer or } H_2O & 16 \\ & \\ at 25 \ ^{\circ}C & \\ \end{array}$			
	Yield of disulfide 16 ^{<i>a</i>}			
Thiol 15	Catalyst 4 ^b		Catalyst 6 ^c	
≺(→ ₈ SH	16b (99%)		16b (98%)	
15b SH	16c (99%)		16c (96%)	
15c SH	16a (95%)	16d (quant.)	16a (quant.)	16d (97%)
15a $X = H$ 15d $X = OMe$	16e (98%)	16f (quant.)	16e (quant.)	16f (96%)
$15e X = Me \qquad 15f X = tBu$	16g (quant.)		16g (99%)	
15g X = F 15h X = Cl			16h (quant.) 16i (97%)	
15i X = Br				
SH 15j	16j (97%)		16j (quant.)	
X ¹ SH	16I (quant)		161 (89%)	
15I X^1 = NHBoc, X^2 = CO ₂ Me 15m X^1 = NHAc, X^2 = CO ₂ Me	16m (72%) 16n (92%)		16m (78%) 16n (79%)	
15n $X^1 = H$, $X^2 = CO_2Me$ 15o $X^1 = H$, $X^2 = NHBoc$	160 (95%)		160 (80%)	

Reaction conditions: **15** (0.23 mmol), H_2O_2 (0.23 mmol), and catalyst (3.3 mol%, 7.6 µmol), $CH_2Cl_2/25$ mM Tris-HCl buffer solution (1:1 = v/v) at pH 7.5 and 25 °C. ^{*a*}Isolated yield. ^{*b*}25 mM Tris-HCl buffer solution was used as an aqueous solvent. ^{*c*}Distilled water was used as an aqueous solvent.

Table S2. Optimization of tubing ID of microflow channel.									
H ₂ O ₂ 4 (3.3 mol%)									
SH $25 °C$ S S S $15e$ $16e$									
Entry	Tubing length (m)	Tubing ID (mm)	H ₂ Cl ₂ /H ₂ O Residence time (min) ^a	Amount of catalyst 4 (mol%)	Conversion (%) ^b				
1	4.8	1.0	18.8	3.3	78				
2	4.8	1.0	37.6	3.3	87				
3	4.8	1.0	9.4	3.3	67				
4	10	0.05	19.6	3.3	100				
5	10	0.05	16.8	3.3	100				
6	10	0.05	16.8	1.5	100				
7	10	0.05	16.8	0	0				

^{*a*} Defined as volume of tube (mL)/ flow rate (mL/min). ^{*b*}Estimated by ¹H NMR analysis.

Reaction conditions: **15** (0.23 mmol), H_2O_2 (0.23 mmol), and catalyst (3.45 or 7.6 µmol), $CH_2Cl_2/25$ mM Tris-HCl buffer solution (1:1 = v/v) at pH 7.5 and 25 °C. ^{*a*} Defined as the channel volume (mL)/flow rate (mL/min). ^{*b*}Isolated yield. ^{*c*} Estimated by ¹H NMR analysis. ^{*d*} Not determined due to the low solubility in $CH_2Cl_2^{f}$.

3 References

- 1 A. F. Vaquer, A. Frongia, F. Secci and E. Tuveri, RSC Adv., 2015, 5, 96695–96704.
- 2 E. Rattanangkool, W. Krailat, T. Vilaivan, P. Phuwapraisirisan, M. Sukwattanasinitt and S. Wacharasindhu, *Eur. J. Org. Chem.*, 2014, **2014**, 4795–4804.
- 3 A. Talla, B. Driessen, N. J. W. Straathof, L.-G. Milroy, L. Brunsveld, V. Hessel and T. Noël, *Adv. Synth. Catal.*, 2015, **357**, 2180–2186.
- 4 H. Huang, J. Ash and J. Y. Kang, Org. Biomol. Chem., 2018, 16, 4236–4242.
- 5 P. Mampuys, Y. Zhu, S. Sergeyev, E. Ruijter, R. V. A. Orru, S. Van Doorslaer and B. U. W. Maes, *Org. Lett.*, 2016, **18**, 2808–2811.
- 6 M. Lo Conte and K. S. Carroll, Angew. Chem. Int. Ed., 2012, 51, 6502–6505.
- 7 H.-Y. Huang and C.-F. Liang, Asian J. Org. Chem., 2018, 7, 955–963.
- 8 F. Ishikawa, R. W. Haushalter and M. D. Burkart, J. Am. Chem. Soc., 2012, 134, 769–772.
- 9 V. Rathore, A. Upadhyay and S. Kumar, Org. Lett., 2018, 20, 6274–6278.
- 10 S. S. Shah, S. Karthik and N. D. P. Singh, RSC Adv., 2015, 5, 45416–45419.
- 11 M. Oba, K. Tanaka, K. Nishiyama and W. Ando, J. Org. Chem., 2011, 76, 4173-4177.