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1. NMR spectra 

1.1 tert-Butyl (S)-(tetrahydrotellurophen-3-yl)carbamate (7) 

 

 

 

 

  

tert-Butyl (S)-(tetrahydrotellurophen-3-yl)carbamate

(1H NMR in CDCl3)

CHCl3

tert-Butyl (S)-(tetrahydrotellurophen-3-yl)carbamate

(13C NMR in CDCl3)

CHCl3
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1.2 tert-Butyl (S)-(tetrahydro-2H-telluropyran-3-yl)carbamate (8) 

 

 

 

  

tert-Butyl (S)-(tetrahydro-2H-telluropyran-3-yl)carbamate

(1H NMR in CDCl3)

CHCl3

tert-Butyl (S)-(tetrahydro-2H-telluropyran-3-yl)carbamate

(13C NMR in CDCl3)

CHCl3
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1.3 (S)-Tetrahydrotellurophen-3-amine hydrochloride (4) 

 

 

 

 

  

(S)-Tetrahydrotellurophen-3-amine hydrochloride

(1H NMR in D2O)

H2O

(S)-Tetrahydrotellurophen-3-amine hydrochloride

(13C NMR in D2O)
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1.4 (S)-Tetrahydro-2H-telluropyran-3-amine hydrochloride (5) 

 

 

  

(S)-Tetrahydro-2H-telluropyran-3-amine hydrochloride 

(1H NMR in D2O)

(S)-Tetrahydro-2H-telluropyran-3-amine hydrochloride 

(13C NMR in D2O)



7 

 

1.5 NMR spectra of disulfides (16a–t) 

 

1,2-Didecyl disulfide (16a) 

Colorless oil; Yield in batch: 38.7 mg (99%) and 38.5 mg (98%) using 4 and 6, respectively; Yield in flow: 

39.4 mg (quant.) using 4; 
1
H NMR (CDCl3): δ = 2.60 (t, J = 7.4 Hz, 4H), 1.63–1.57 (m, 4H), 1.32–1.20 (m, 

28H), 0.81 ppm (t, J = 6.7 Hz, 4H); 
13

C NMR (CDCl3): δ = 39.22, 31.92, 29.59, 29.55, 29.34, 29.27, 29.25, 

28.56, 22.71, 14.13 ppm. Spectroscopic data are in accordance with the previously presented.
1
 

 

 

1,2-didecyl disulfide

(1H NMR in CDCl3)

1,2-didecyl disulfide

(13C NMR in CDCl3)
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1,2-dicyclohexyl disulfide (16b) 

Colorless oil; Yield in batch: 26.1 mg (99%) and 25.4 mg (96%) using 4 and 6, respectively; Yield in flow: 

25.9 mg (quant.) using 4, respectively; 
1
H NMR (CDCl3): δ = 2.72–2.69 (m, 2H), 2.08–2.02 (m, 4H), 1.84–

1.77 (m, 4H), 1.65–1.63 (m, 2H), 1.38–1.25 ppm (m, 10H); 
13

C NMR (CDCl3): δ = 50.0, 32.9, 26.1, 25.7 ppm. 

Spectroscopic data are in accordance with the previously presented.
2
 

 

 

  

1,2-dicyclohexyl disulfide

(1H NMR in CDCl3)

1,2-dicyclohexyl disulfide

(13C NMR in CDCl3)
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1,2-Diphenyl disulfide (16c) 

White solid; Yield in batch: 23.4 mg (95%) and 29.3 mg (quant.) using 4 and 6; Yield in flow: 23.6 mg (95%) 

and 23.9 mg (96%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.42–7.41 (m, 4H), 7.22–7.20 (m, 4H), 

7.15–7.12 ppm (m, 2H); 
13

C NMR (CDCl3): δ = 137.1, 129.1, 127.5, 127.2 ppm. Spectroscopic data are in 

accordance with the previously presented.
3
 

 

 

 

1,2-Diphenyl disulfide

(1H NMR in CDCl3)

1,2-Diphenyl disulfide

(13C NMR in CDCl3)

CHCl3
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Bis(4-methoxyphenyl) disulfide (16d) 

Off yellow oil; Yield in batch: 35.5 mg (quant.) and 30.4 mg (97%) using 4 and 6, respectively; Yield in flow: 

32.0 mg (quant.) and 30.4 mg (97%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.32–7.30 (m, 4H), 

6.76–6.73 (m, 4H), 3.70 ppm (s, 6H); 
13

C NMR (CDCl3): δ = 159.9, 132.7, 128.4, 114.6, 55.4 ppm. 

Spectroscopic data are in accordance with the previously presented.
3 

 

 

 

Bis(4-fluorophenyl) disulfide

(1H NMR in CDCl3)

Bis(4-fluorophenyl) disulfide

(13C NMR in CDCl3)
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Bis(4-methylphenyl) disulfide (16e) 

White solid; Yield in batch: 27.3 mg (98%) and 29.2 mg (quant.)  using 4 and 6, respectively; Yield in flow: 

27.1 mg (97%) and 27.2 mg (97%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.44–7.14 (m, 4H), 7.15 

(d, J = 8.1, Hz, 4H), 2.37 ppm (s, 6H); 
13

C NMR (CDCl3): δ = 137.5, 133.9, 129.8, 128.6, 21.1 ppm. 

Spectroscopic data are in accordance with the previously presented.
1
 

 

 

  

Bis(4-methylphenyl) disulfide

(1H NMR in CDCl3)

Bis(4-methylphenyl) disulfide

(13C NMR in CDCl3)
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1,2-bis(4-(tert-butyl)phenyl) disulfide (16f) 

White solid; Yield in batch: 37.4 mg (quant.) and 35.9 mg (96%) using 4 and 6, respectively; Yield in flow: 

37.6 mg (quant.) and 34.8 mg (93%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.51–7.49 (m, 4H), 

7.39–7.37 (m, 4H), 1.35 ppm (m, 18H); 
13

C NMR (CDCl3): δ = 150.5, 134.1, 127.8, 126.2, 34.6, 31.3 ppm. 

Spectroscopic data are in accordance with the previously presented.
4
 

 

 
 

1,2-bis(4-(tert-butyl)phenyl) disulfide

(1H NMR in CDCl3)

1,2-bis(4-(tert-butyl)phenyl) disulfide

(13C NMR in CDCl3)
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Bis(4-fluorophenyl) disulfide (16g) 

Colorless oil; Yield in batch: 29.0 mg (quant.) and 28.2 mg (99%) using 4 and 6, respectively, respectively; 

Yield in flow: 29.0 mg (quant.) and 27.9 mg (97%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 

7.38–7.34 (m, 4H), 6.95–6.90 (m, 4H); 
13

C NMR (CDCl3): δ = 163.62, 161.64, 132.19 (d, J = 3.4 Hz), 

131.30 (d, J = 8.8 Hz), 116.31 ppm (d, J = 22.6 Hz). Spectroscopic data are in accordance with the 

previously presented.
1 

 

 

Bis(4-fluorophenyl) disulfide

(1H NMR in CDCl3)

Bis(4-fluorophenyl) disulfide

(13C NMR in CDCl3)

CHCl3
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Bis(4-chlorophenyl) disulfide (16h) 

White solid; Yield in batch: 33.5 mg (quant.) and 34.6 mg (quant.) using 4 and 6, respectively; Yield in flow: 

31.5 mg (97%) and 31.0 mg (95%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.33–7.30 (m, 4H), 

7.20–7.17 ppm (m, 4H); 
13

C NMR (CDCl3): δ = 135.2, 133.7, 129.3 ppm. Spectroscopic data are in 

accordance with the previously presented.
1
 

 

 

Bis(4-chlorophenyl) disulfide

(1H NMR in CDCl3)

Bis(4-chlorophenyl) disulfide

(13C NMR in CDCl3)
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Bis(4-bromophenyl) disulfide (16i) 

White solid; Yield in batch: 43.2 mg (quant.) and 41.1 mg (97%) using 4 and 6, respectively; Yield in flow: 

41.9 mg (99%) and 41.7 mg (98%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.35–7.32 (m, 1H), 

7.25–7.24 ppm (m, 1H); 
13

C NMR (CDCl3): δ = 135.8, 132.3, 129.4, 121.6 ppm. Spectroscopic data are in 

accordance with the previously presented.
1 

 

Bis(4-bromophenyl) disulfide

(1H NMR in CDCl3)

CHCl3

Bis(4-bromophenyl) disulfide

(13C NMR in CDCl3)
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Bis(phenylmethyl) disulfide (16j) 

White solid; Yield in batch: 26.3 mg (97%) and 29.3 mg (quant.) using 4 and 6, respectively; Yield in flow: 

27.5 mg (99%) and 27.5 mg (99%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 7.26–7.15 (m, 10H), 

3.51 ppm (s, 4H); 
13

C NMR (CDCl3): δ = 137.4, 129.5, 128.5, 127.5, 43.3 ppm. Spectroscopic data are in 

accordance with the previously presented.
1 

 

 

Bis(phenylmethyl) disulfide

(1H NMR in CDCl3)

Bis(phenylmethyl) disulfide

(13C NMR in CDCl3)
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4,4'-Dipyridyl disulfide dihydrochloride (16k) 

Off yellow solid; Yield in batch: 33.5 mg (quant.) using 7; Yield in flow: 33.3 mg (quant.) using 7; 
1
H 

NMR (D2O): δ = 8.53–8.52 (m, 4H), 8.08–8.06 ppm (m, 4H); 
13

C NMR (D2O): δ = 159.6, 140.6, 

123.3 ppm. HRMS (ESI+): m/z calcd for C10H9N2S2
+
: 221.0202 [M+H−2HCl]

+
; found: 221.0205. 

 

 

× ×

4,4‘-Dipyridyl disulfide dihydrochloride

(1H NMR in D2O)

Impurities included in the starting material
(i.e., thiol 11k )are indicated by a symbol x.

H2O

4,4‘-Dipyridyl disulfide dihydrochloride

(13C NMR in D2O)

×
×

Impurities included in the starting material
(i.e., thiol 11k )are indicated by a symbol x.
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N-(tert-Butoxycarbonyl)-L-cysteine methyl ester (16l) 

Colorless oil; Yield in batch: 54.2 mg (quant.) and 47.1 mg (89%) using 4 and 6, respectively; Yield in flow: 

50.7 mg (96%) and 51.2 mg (97%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 5.43 (br d, J = 7.0 Hz, 

2H), 4.62–4.58 (m, 2H), 3.77 (s, 6H), 3.17–3.13 (m, 4H), 1.45 ppm (s, 18H); 
13

C NMR (CDCl3): δ = 171.2, 

155.1, 80.3, 52.8, 52.7, 41.2, 28.3 ppm; LRMS (APCI+): m/z calcd for C18H33N2O8S2
+
: 469.17 [M+H]

+
; found: 

469.19. Spectroscopic data are in accordance with the previously presented.
5
 

 

 

N-(tert-Butoxycarbonyl)-L-cysteine methyl ester

(1H NMR in CDCl3)

N-(tert-Butoxycarbonyl)-L-cysteine methyl ester

(13C NMR in CDCl3)
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N-Acetyl-L-cysteine methyl ester (16m) 

White solid; Yield in batch: 28.6 mg (72%) and 30.9 mg (78%) using 4 and 6, respectively; Yield in flow: 

28.5 mg (71%) and 27.0 mg (68%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 6.65 (d, J = 7.45 Hz, 

2H), 4.82–4.79 (m, 2H), 3.71 (s, 6H), 3.17–3.10 (m, 4H), 2.00 ppm (s, 6H); 
13

C NMR (CDCl3): δ = 

170.9, 170.2, 52.8, 51.7, 40.7, 23.1 ppm; LRMS (APCI+): m/z calcd for C12H21N2O6S2
+
: 353.08 

[M+H]
+
; found: 353.10.

6
 

 

 
 

N-Acetyl-L-cysteine methyl ester

(1H NMR in CDCl3) 

N-Acetyl-L-cysteine methyl ester

(13C NMR in CDCl3) 
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Dimethyl 3,3'-disulfanediyldipropionate (16n) 

Colorless liquid; Yield in batch: 26.6 mg (92%) and 21.5 mg (79%) using 4 and 6, respectively; Yield in flow: 

26.4 mg (98%) and 27.5 mg (quant) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 3.64 (s, 6H), 2.86 (t, J 

= 7.2 Hz, 4H), 2.68 ppm (t, J = 7.2 Hz, 4H); 
13

C NMR (CDCl3): δ = 172.1, 51.9, 33.9, 33.1 ppm; LRMS 

(APCI+): m/z calcd for C8H15O4S2
+
: 239.04 [M‒H]

+
; found: 239.04. Spectroscopic data are in accordance with 

the previously presented.
7
 

 

 

Dimethyl 3,3'-disulfanediyldipropionate

(1H NMR in CDCl3)

Dimethyl 3,3'-disulfanediyldipropionate

(13C NMR in CDCl3)
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Di-tert-butyl (disulfanediylbis(ethane-2,1-diyl))dicarbamate (16o) 

White solid; Yield in batch: 38.5 mg (95%) and 31.5 mg (80%) using 4 and 6, respectively; Yield in flow: 37.0 

mg (93%) and 37.2 mg (93%) using 4 and 5, respectively; 
1
H NMR (CDCl3): δ = 5.06 (br s, 2H), 3.38 (q, J = 

6.0 Hz, 4H), 2.73 (t, J = 6.3 Hz, 4H), 1.38 (s, 18H) ppm; 
13

C NMR (CDCl3): δ = 155.8, 79.5, 39.3, 38.5, 28.4 

ppm; LRMS (APCI+): m/z calcd for C14H29N2O4S2
+
: 353.16 [M‒H]

+
; found: 353.15. Spectroscopic data are in 

accordance with the previously presented.
8
 

 

Di-tert-butyl (disulfanediylbis(ethane-2,1-diyl))dicarbamate

(1H NMR in CDCl3) 

Di-tert-butyl (disulfanediylbis(ethane-2,1-diyl))dicarbamate

(13C NMR in CDCl3) 
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L-Cystine dihydrochloride (16p) 

White solid; Yield in batch: 33.2 mg (94%); Yield in flow: 35.5 mg (quant.); 
1
H NMR (D2O): δ = 4.35 (dd, J = 

4.2, 8.0 Hz, 2H), 3.32 (dd, J = 4.3, 15.2 Hz, 2H), 3.16 ppm (dd, J = 8.0, 15.3 Hz, 2H); 
13

C NMR (D2O): δ = 

170.5, 51.8, 36.4 ppm; LRMS (APCI+): m/z calcd for C6H13N2O4S2
+
: 241.03 [M+H‒2HCl]

+
; found: 241.06. 

Spectroscopic data are in accordance with the previously presented.
9
 

 

 

L-Cystine dihydrochloride

(1H NMR in D2O) 

L-Cystine dihydrochloride

(13C NMR in D2O) 
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3,3′-Dithiodipropionic acid (16q) 

White solid; Yield in batch: 23.2 mg (98%); Yield in flow: 23.1 mg (98%); 
1
H NMR (CD3OD): δ = 4.94 (br s, 

1H), 2.95 (t, J = 7.1 Hz, 4H), 2.74 ppm (t, J = 6.9 Hz, 4H); 
13

C NMR (CD3OD): δ = 173.9, 33.4, 32.9 ppm; 

LRMS (APCI−): m/z calcd for C6H9O4S2
-
: 208.99 [M‒H]

+
; found: 208.98. Spectroscopic data are in 

accordance with the previously presented.
10

 

 

 

3,3′-Dithiodipropionic acid

(1H NMR in CD3OD)

MeOH

3,3′-Dithiodipropionic acid

(13C NMR in CD3OD)

MeOH
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Cystamine dihydrochloride (16r) 

White solid; Yield in batch: 24.3 mg (96%); Yield in flow: 25.4 mg (quant.); 
1
H NMR (D2O): δ = 3.31 (t, J = 

6.5 Hz, 2H), 2.92 (t, J = 6.5 Hz, 2H), 2.68 ppm (t, J = 7.2 Hz, 4H); 
13

C NMR (CDCl3): δ = 38.0, 33.6 ppm; 

LRMS (APCI+): m/z calcd for C4H13N2S2
+
: 153.05 [M+H‒2HCl]

+
; found: 153.05. Spectroscopic data are in 

accordance with the previously presented.
11

 

 

 

Cystamine dihydrochloride

(1H NMR in D2O) 

Cystamine dihydrochloride

(13C NMR in D2O) 
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Glutathione disulfide (16s) 

White solid; Yield in batch: 69.7 mg (quant.); Yield in flow: 69.0 mg (quant.); in a flow system; 
1
H NMR 

(D2O): δ = 4.60 (dd, J = 4.65, 9.35 Hz, 2H), 3.86–3.78 (m, 4H), 3.69 ppm (t, J = 5.9 Hz, 2H) , 3.13 ppm (dd, J 

= 4.7, 14.2 Hz, 2H), 2.84–2.80 ppm (m, 2H), 2.45–2.34 ppm (m, 4H), 2.04–2.00 ppm (m, 4H); 
13

C NMR 

(D2O): δ = 174.7, 173.6, 173.5, 172.4, 53.7, 52.6, 41.7, 38.8, 31.3, 27.6, 26.0 ppm; LRMS (APCI +): m/z calcd 

for C20H33N6O12S2
+
: 613.16 [M+H]

+
; found: 613.23. Spectroscopic data are in accordance with the previously 

presented.
9
 

 

 

Glutathione disulfide

(1H NMR in D2O) 

Glutathione disulfide

(13C NMR in D2O) 
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2. Supplemental Figures and Tables 

 

 

 

Fig. S1 ESI(+)-MS spectral changes upon the oxidation and subsequent reduction of 4 in H2O at 

25 °C. Reaction conditions: (a) 4 (0.47 μmol) and H2O2 (0.47 μmol) were mixed in H2O. (b) to a was 

added H2O2 (1.41 μmol); (c) to b was added DTT
red

 (1.88 μmol). 
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Fig. S2 
1
H NMR spectral changes upon oxidation and subsequent reduction of tellurides in D2O at 

25 °C. Left panel: (a), 4 (24 μmol) in D2O (500 μL); (b), (a) + H2O2 (24 μmol); (c), (b) + DTT
red

 (24 

μmol). Middle panel: (a), 5 (24 μmol) in D2O (500 μL); (b), (a) + H2O2 (24 μmol); (c), (b) + DTT
red

 

(24 μmol). Right panel: (a), 6 (24 μmol) in D2O (500 μL); (b), (a) + H2O2 (24 μmol); (c), (b) + 

DTT
red

 (24 μmol). All sample solutions were incubated for 5 min at 25°C before the NMR 

measurements. 
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Fig. S3
 1

H NMR spectral changes upon oxidation and subsequent reduction of tellurides 7 and 8 in 

CD3OD at 25 °C. Left panel: (a), 7 (23.4 μmol) in CD3OD (550 μL); (b), (a) + H2O2 (23.4 μmol); (c), 

(b) + 3-mercaptopropionic acid (46.8 μmol). Right panel: (a), 8 (24 μmol) in CD3OD (550 μL); (b), 

(a) + H2O2 (24 μmol); (c), (b) + 3-mercaptopropionic acid (48 μmol). All sample solutions were 

incubated for 5 min at 25°C before the NMR measurements. 
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Fig. S4 (a) GPx-like activity coupled with reduction of GSSG by NADPH in the presence of 

glutathione reductase (GR). (b) GPx-like activity assay for selenides 1–3, tellurides 4–6, and ebselen. 

Reaction conditions were [GSH]0 = 4 mM, [H2O2]0 = 0.25 mM, [NADPH]0 = 0.3 mM, [GR] = 4 

units/mL, and [catalyst] = 25 μM in pH 7.2 phosphate buffer at 25 °C. 
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Fig. S5 Effect of H2O2 concentration on GPx-like activity. (a)–(c): GPx-like activity assay for 

tellurides 4–6. Reaction conditions were [GSH]0 = 4 mM, [H2O2]0 = 0.06–0.25 mM, [NADPH]0 = 

0.3 mM, [GR] = 4 units/mL, and [catalyst] = 25 μM in pH 7.2 phosphate buffer at 25 °C. 

  

(a) (b)

(c)

C
o

n
c
e
n
tr

a
ti
o
n
 o

f 
N

A
D

P
H

 (
m

M
)

Reaction time (min)

Reaction time (min)

C
o
n
c
e
n
tr

a
ti
o
n
 o

f 
N

A
D

P
H

 (
m

M
)

Reaction time (min)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.30

C
o
n
c
e
n
tr

a
ti
o
n
 o

f 
N

A
D

P
H

 (
m

M
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.30

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5

[H2O2]0

0.50 mM
0.25 mM

0.33 mM
0.13 mM
0.06 mM

[H2O2]0

0.50 mM
0.25 mM

0.33 mM
0.13 mM
0.06 mM

[H2O2]0

0.50 mM
0.25 mM

0.33 mM
0.13 mM
0.06 mM

4 5

6



31 

 

 

 

Fig. S6 (a) GPx-like activity coupled with oxidation of benzenethiol (16a) in CHCl3. (b) GPx-like 

activity assay for selenides 3, 13, and 14, tellurides 6–8, and ebselen. Reaction conditions were 

[15a]0 = 2 mM, [CHP]0 = 2 mM, [catalyst] = 0.04 mM in CHCl3 at 25 °C. (c) UV spectra and the UV 

differential spectra of 15a (2 mM) and 16a (1 mM) in CHCl3. 
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Fig. S7 Effect of CHP concentration on GPx-like activity in CHCl3. (a), (b), and (c): GPx-like 

activity assay for tellurides 7, 8, and 6, respectively. Reaction conditions were [15a]0 = 2 mM, 

[CHP]0 = 0.5–8.0 mM, and [catalyst] = 0.04 mM in CHCl3 at 25 °C. 
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Fig. S8 
1
H NMR spectra obtained from aerial oxidation experiments of 15e by using cyclic telluride catalysts. 

Reaction conditions: 15e (0.23 mmol) and catalyst (3.3 mol%, 7.6 μmol) in CH2Cl2 (4 mL)/water (4 mL) at 

25 °C for 18 h in the absence (a) or presence of telluride 4 (b), 5 (c), or 6 (d). 
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Fig. S9 Residence time effect on the catalytic oxidation of 15b in a segmented-microflow system. 

Reaction conditions: 15b (0.23 mmol), H2O2 (0.23 mmol), and catalyst (3.45 μmol) in CH2Cl2/25 

mM Tris-HCl buffer solution at pH 7.5 (1:1 = v/v) at 25 °C. The yields were estimated by 
1
H NMR. 

 

 

Fig. S10 Isolated yield of 16e during recycle of telluride catalysts 4–6 in five times. Reaction 

conditions: 15e (0.23 mmol), H2O2 (0.23 mmol), and catalyst (7.6 μmol) in CH2Cl2 (4 mL) and H2O2 

(4 mL) at 25 °C for 180 min. The reaction was progressed with vigorously stirring.  
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Fig. S11. Isolated yield of 16r during six consecutive cycles of catalyst 7. Reaction conditions: 15r 

(0.23 mmol), H2O2 (0.23 mmol), and catalyst (7.6 μmol) in CH2Cl2 (4 mL) and H2O2 (4 mL) at 25 °C 

for 6 h. The reaction was progressed with vigorously stirring. 
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Fig. S12. Cytotoxicity of compounds 4–6 at different concentrations determined by MTT assay with 

HeLa cells. HeLa cells (1×10
4
 cell/well) was cultured for 4 h in the presence of compounds 4−6 

(1−50 μM) at 37 ˚C and 5% CO2. Bars are shown as means ±SEM (n=4). 

 

Experimental: Each well in a 96-well plate was seeded with HeLa cells (1 × 10
-4

 cells/well) in Dulbecco's 

Modified Eagle's Medium supplemented with 5% fetal bovine serum. After culturing in a humidified incubator 

at 37 °C with 5% CO2 for 24 h, the cells were treated with 1−50 μM of compounds 4−6 in medium (100 μL) 

without fetal bovine serum and incubated for 4 h at 37 °C with 5% CO2. The medium was then removed, and 

the cells were washed with phosphate-buffered saline. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) solution (100 μL, 0.5 mg/mL in medium) was then added, and the cells were incubated for 4 h 

at 37 °C with 5% CO2. MTT solution was then removed and dimethyl sulfoxide (100 μL) was added to each 

well to dissolve the formazan crystals, and the cells were incubated at 25 °C with shaking at 350 rpm. The 

absorbance at 530 nm was measured using a microplate reader. The control cells, which were treated with the 

medium containing no compound, were assumed to be 100% viable. The percentage viability of the treated 

cells was calculated from eq. (1). 
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Fig. S13 Schematic (a) and photographs (b) of flow setup for the oxidation of fat-soluble thoils. 

 

Note: Plastic T-shape junctions were purchased from EYELA. (Inner diameter: 0.5 mm). Teflon
®
 

tubes (ID = 0.5 mm) and PEEK fittings were purchased from GL Science Co., Ltd. Solutions were 

introduced to microflow channels with syringe pumps (Pump 1: Fusion Touch 100 from ISIS Co., 

Ltd and Pump 2: PHD 2000 syringe pump infusion 100 from Harvard apparatus) equipped disposable 

plastic syringes which include no rubber in the material. 
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Fig. S14 Schematic of flow setup for the oxidation of water-soluble thiols. 
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Table S1. Catalytic oxidation of thiols in a biphasic organic-aqueous system under a batch condition.  

 

Thiol 15 
Yield of disulfide 16a

 

Catalyst 4b
 Catalyst 6c

 

 

15b 

16b (99%) 

 

16b (98%) 

 

 
15c 

16c (99%) 16c (96%)
 

 
16a (95%) 

16e (98%) 

16d (quant.) 

16f (quant.) 

16a (quant.) 

16e (quant.) 

16d (97%) 

16f (96%) 15a X = H 

15e X = Me 

15d X = OMe 

15f X = tBu 

 

15g X = F 

15h X = Cl 

15i X = Br 

16g (quant.) 

16h (quant.) 

16i (quant.) 

16g (99%) 

16h (quant.) 

16i (97%) 

 

15j 

16j (97%) 16j (quant.) 

 
15l X1

 = NHBoc, X
2
 = CO2Me 

15m X
1
 = NHAc, X

2
 = CO2Me 

15n X1
 = H, X

2
 = CO2Me 

15o X1
 = H, X

2
 = NHBoc 

16l (quant) 

16m (72%) 

16n (92%) 

16o (95%) 

16l (89%) 

16m (78%) 

16n (79%) 

16o (80%) 

Reaction conditions: 15 (0.23 mmol), H2O2 (0.23 mmol), and catalyst (3.3 mol%, 7.6 μmol), CH2Cl2/25 mM 

Tris-HCl buffer solution (1:1 = v/v) at pH 7.5 and 25 °C.
 a
Isolated yield. 

b
25 mM Tris-HCl buffer solution was 

used as an aqueous solvent. 
c
Distilled water was used as an aqueous solvent. 
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Table S2. Optimization of tubing ID of microflow channel. 

 

Entry 
Tubing 

length (m) 
Tubing ID (mm) 

Residence time 

(min)
a
 

Amount of catalyst 4 

(mol%) 
Conversion (%)

b
 

1 4.8 1.0 18.8 3.3 78 

2 4.8 1.0 37.6 3.3 87 

3 4.8 1.0 9.4 3.3 67 

4 10 0.05 19.6 3.3 100 

5 10 0.05 16.8 3.3 100 

6 10 0.05 16.8 1.5 100 

7 10 0.05 16.8 0 0 

a 
Defined as volume of tube (mL)/ flow rate (mL/min). 

b
Estimated by 

1
H NMR analysis. 
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Table S3. Catalytic oxidation of thiols in biphasic organic-aqueous system under a segmented microflow 

condition. 

 

Thiol 15 Residence time
 a

 Yield of disulfide 16b
 

 

15b 

65.4 min
 

 

16b (85% conversion)
c
 

 

 
15c 

65.4 min 16c (86% conversion)
c 

 32.7 min 
16a (96%) 

16e (97%) 

16a (96%) 

16e (97%) 15a X = H 

15e X = Me 

15d X = OMe 

15f X = tBu 

 

15g X = F 

15h X = Cl 

15i X = Br 

19.6 min 

16g (97%) 

16h (95%) 

16i (98%) 

 

15j 

32.7 min 16j (99%) 

 

15k 

ND
d
 16k (ND)

d
 

 
15l X1

 = NHBoc, X
2
 = CO2Me 

15m X
1
 = NHAc, X

2
 = CO2Me 

15n X1
 = H, X

2
 = CO2Me 

15o X1
 = H, X

2
 = NHBoc 

32.7 min 

16l (97%) 

16m (68%) 

16n (quant.) 

16o (93%) 

Reaction conditions: 15 (0.23 mmol), H2O2 (0.23 mmol), and catalyst (3.45 or 7.6 μmol), CH2Cl2/25 mM 

Tris-HCl buffer solution (1:1 = v/v) at pH 7.5 and 25 °C.
 a 

Defined as the channel volume (mL)/flow rate 

(mL/min). 
b
Isolated yield. 

c 
Estimated by 

1
H NMR analysis. 

d
 Not determined due to the low solubility in 

CH2Cl2 
f
. 
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