Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

## **Supplementary Information**

## Effects of controllable mesostructure of nano-sized ZSM-5 on the co-

# cracking of phenolic bio-oil model compounds and ethanol

Wenbo Wang<sup>a</sup>, Zhongyang Luo<sup>a</sup>\*, Simin Li<sup>a</sup>, Shuang Xue<sup>a</sup> and Yi Yang<sup>a</sup>

<sup>a</sup> State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, China. \*Corresponding author: zyluo@zju.edu.cn

### **Experimental**

### Materials

Tetraethyl orthosilicate (TEOS, 99.99% metals basis, Aladdin), tetrapropylammonium hydroxide (TPAOH, 40 wt% aqueous solution, Aladdin), tetrapropylammonium bromide (TPABr, 98%, Aladdin), aluminium sulfate (Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·18H<sub>2</sub>O, 99%, Sinopharm), ammonium hydroxide (NH<sub>4</sub>OH, 28 wt% aqueous solution, Aladdin), colloidal silica (LUDOX AS-40, 40 wt% aqueous suspension, Sigma-Aldrich), cetyltrimethylammonium bromide (CTAB, 99%, Sinopharm), tetraethylammonium hydroxide (TEAOH, 25 wt% aqueous solution, Aladdin) and hydrochloric acid (HCl, 37 wt%, Sinopharm) were reagents for zeolites synthesis and were used without further purification. Phenol (99%, Sinopharm), guaiacol (98%, Aladdin), eugenol (99%, Aladdin), acetic acid (99.5%, Aladdin), hydroxyacetone (90%, Sigma-Aldrich), 2-methylfuran (98%, Aladdin) and ethanol (99.7%, Sinopharm) were reagents as bio-oil model compounds and were used without further purification.

### Characterization

The detailed  $NH_3$ -TPD test procedure: the samples were degassed under Ar flow at 300 °C for 2h, followed by saturation at 50 °C for 30 min using 30 mL/min flow of 5% v/v  $NH_3$  in Ar. The sample was then purged at 100 °C under Ar flow for 30 min.  $NH_3$ -TPD profiles were subsequently recorded from 100 °C to 600 °C with a heating rate of 10 °C/min.

The detailed Py-IR test procedure: The sample wafers were degassed at 400 °C for 2h in Ar, followed by saturation with pyridine for 30 min at room temperature. The sample was then heated to 150 °C for 1h to let physical adsorbed pyridine evacuated thoroughly. The Py-IR spectra were recorded under room temperature.

X-ray fluorescence (XRF) test was performed on a Thermo ARL 9900 instrument. All samples were dried at 100 °C overnight before test. X-ray photoelectron spectroscopy (XPS) test was performed on a ESCALAB 250Xi instrument with with a focused X-ray source (Al K $\alpha$ , hv = 1486.6 eV), and the C 1s line was taken as an internal standard at 284.8 eV.

Solid state magic-angle-spinning nuclear magnetic resonance (ssMAS NMR) test was performed on a Bruker Avance III HD instrument equipped with a 3.2 mm MAS probe spinning at 15 kHz. 27AI MAS NMR spectra were recorded with a frequency of 104.24 MHz and a recycle delay of 1 s by using one-pulse sequence. 29Si MAS NMR spectra were recorded with a frequency of 79.49 MHz and a recycle delay of 1.5 s by using cross-polarization (CP) sequence.

|        | abic SII Detai  | icu uciuity pro         | per ties of | an samples.                    |
|--------|-----------------|-------------------------|-------------|--------------------------------|
| Sample | $C_{BAS}^{a,b}$ | $C_{LAS}^{a,b}$         | B/L         | Total acid amount <sup>b</sup> |
|        | (mmol g⁻¹)      | (mmol g <sup>-1</sup> ) |             | (mmol g <sup>-1</sup> )        |
| Z      | 0.086           | 0.151                   | 0.57        | 0.238                          |
| Z-N    | 0.266           | 0.113                   | 2.36        | 0.378                          |
| Z-C    | 0.233           | 0.101                   | 2.31        | 0.334                          |
| Z-M    | 0.138           | 0.126                   | 1.09        | 0.265                          |
| K1     | 0.155           | 0.236                   | 0.66        | 0.391                          |
| K1-N   | 0.213           | 0.276                   | 0.77        | 0.490                          |
| K1-C   | 0.169           | 0.256                   | 0.66        | 0.424                          |
| K1-M   | 0.071           | 0.333                   | 0.21        | 0.404                          |
| К2     | 0.211           | 0.223                   | 0.95        | 0.434                          |
| K2-N   | 0.260           | 0.244                   | 1.06        | 0.504                          |
| K2-C   | 0.214           | 0.197                   | 1.08        | 0.411                          |
| K2-M   | 0.158           | 0.269                   | 0.59        | 0.427                          |

Table S1. Detailed acidity properties of all samples.

<sup>a</sup>The ratio of concentration of Brønsted to Lewis acid sites ( $C_{BAS}$  and  $C_{LAS}$ , respectively) were calculated by the Py-IR results.

<sup>b</sup>Total acid amount were calculated by  $NH_3$ -TPD results. The quantative value of  $C_{BAS}$  and  $C_{LAS}$  were obtained by combining the B/L value and total acid amount.

|        |                  |              | ,     | 0 1   |       |                    |       |       |
|--------|------------------|--------------|-------|-------|-------|--------------------|-------|-------|
| Sample | Aqueous fraction | Oil fraction | Coke  | Char  | Tar   | Solid <sup>a</sup> | Gas   | Total |
|        | (wt%)            | (wt%)        | (wt%) | (wt%) | (wt%) | (wt%)              | (wt%) | (wt%) |
| Z      | 17.3             | 22.8         | 1.2   | 0.6   | 3.7   | 5.5                | 57.7  | 103.4 |
| Z-N    | 16.0             | 22.0         | 1.4   | 0.6   | 4.9   | 6.9                | 49.0  | 93.9  |
| Z-C    | 17.6             | 21.5         | 1.9   | 0.5   | 2.9   | 5.2                | 51.0  | 95.4  |
| Z-M    | 22.3             | 17.3         | 2.8   | 0.4   | 1.0   | 4.3                | 57.8  | 101.6 |
| K1     | 16.1             | 22.1         | 1.3   | 0.6   | 3.9   | 5.8                | 47.5  | 91.5  |
| K1-N   | 19.7             | 22.          | 1.5   | 0.8   | 2.7   | 4.9                | 53.0  | 99.6  |
| K1-C   | 19.0             | 19.3         | 2.6   | 0.1   | 2.3   | 5.0                | 55.2  | 98.4  |
| K1-M   | 19.7             | 17.2         | 4.0   | 0.3   | 1.8   | 6.1                | 49.5  | 92.5  |
| К2     | 17.3             | 23.4         | 1.4   | 2.9   | 1.7   | 6.0                | 50.4  | 97.1  |
| K2-N   | 21.3             | 14.3         | 2.5   | 0.7   | 3.6   | 6.7                | 59.0  | 101.3 |
| K2-C   | 20.1             | 18.4         | 3.1   | 0.5   | 1.7   | 5.3                | 56.6  | 100.5 |
| K2-M   | 20.1             | 17.2         | 3.9   | 0.3   | 1.2   | 5.4                | 56.2  | 98.8  |

Table S2. Summary for mass yield of liquid, solid and gas products of all samples.

<sup>a</sup>Solid products represent for coke, char and tar products.

| Samples | MAHs | PAHs | Aromatics | Phenol | Guaiaco | Eugeno | Alkylphenol | Phenolics | Oxygenates |
|---------|------|------|-----------|--------|---------|--------|-------------|-----------|------------|
|         | (%)  | (%)  | (%)       | (%)    | I       | T      | (%)         | (%)       | (%)        |
|         |      |      |           |        | (%)     | (%)    |             |           |            |
| Z       | 8.2  | 6.3  | 15.5      | 27.0   | 8.4     | 8.8    | 23.9        | 72.9      | 84.5       |
| Z-N     | 5.7  | 5.5  | 14.8      | 21.9   | 11.6    | 13.2   | 21.7        | 73.8      | 85.2       |
| Z-C     | 7.8  | 6.7  | 19.0      | 20.2   | 3.0     | 2.4    | 34.1        | 64.1      | 81.0       |
| Z-M     | 17.7 | 9.3  | 30.5      | 20.1   | 1.2     | 0.0    | 41.3        | 60.3      | 69.5       |
| К1      | 8.9  | 9.3  | 19.6      | 24.2   | 15.3    | 7.1    | 19.2        | 71.3      | 80.4       |
| K1-N    | 10.2 | 8.5  | 23.1      | 19.1   | 4.4     | 0.8    | 29.5        | 58.9      | 76.9       |
| K1-C    | 14.7 | 10.4 | 29.9      | 20.9   | 1.0     | 0.0    | 30.9        | 53.6      | 70.2       |
| K1-M    | 22.3 | 10.9 | 36.8      | 17.2   | 0.0     | 0.0    | 40.6        | 54.7      | 63.2       |
| К2      | 12.1 | 12.4 | 28.7      | 26.4   | 7.0     | 0.0    | 24.9        | 62.3      | 71.3       |
| K2-N    | 18.5 | 10.3 | 33.6      | 17.4   | 0.0     | 0.0    | 29.7        | 51.2      | 66.5       |
| K2-C    | 19.6 | 10.2 | 36.0      | 16.8   | 0.0     | 0.0    | 31.2        | 49.8      | 64.0       |
| K2-M    | 21.6 | 11.5 | 36.7      | 17.0   | 0.0     | 0.0    | 40.1        | 53.8      | 63.3       |

**Table S3.** Detailed product distribution of oil phase fraction presented by selectivity (relative peakarea). The unit of all data below is %.

**Table S4.** Detailed product distribution of oil phase fraction presented by relative yield. The unit of all data below is  $g^{-1}_{feed}$ .

| Samples | MAHs              | PAHs               | Aromatics              | Phenol                 | Guaiaco                | Eugeno                 | Alkylphenol            | Phenolics         | Oxygenates        |
|---------|-------------------|--------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------|-------------------|
|         | (g⁻               | (g⁻                | (g <sup>-1</sup> feed) | (g <sup>-1</sup> feed) | T                      | I                      | (g <sup>-1</sup> feed) | $(g^{-1}_{feed})$ | $(g^{-1}_{feed})$ |
|         | <sup>1</sup> feed | <sup>1</sup> feed) |                        |                        | (g <sup>-1</sup> feed) | (g <sup>-1</sup> feed) |                        |                   |                   |
| Z       | 1.9               | 1.4                | 3.5                    | 6.2                    | 1.9                    | 2.0                    | 5.5                    | 16.6              | 19.3              |
| Z-N     | 1.3               | 1.2                | 3.3                    | 4.8                    | 2.6                    | 2.9                    | 4.8                    | 16.3              | 18.8              |
| Z-C     | 1.7               | 1.4                | 4.1                    | 4.4                    | 0.6                    | 0.5                    | 7.3                    | 13.8              | 17.4              |
| Z-M     | 3.1               | 1.6                | 5.3                    | 3.5                    | 0.2                    | 0.0                    | 7.1                    | 10.4              | 12.0              |
| K1      | 2.0               | 2.1                | 4.3                    | 5.3                    | 3.4                    | 1.6                    | 4.2                    | 15.7              | 17.7              |
| K1-N    | 2.2               | 1.9                | 5.1                    | 4.2                    | 1.0                    | 0.2                    | 6.5                    | 12.9              | 16.9              |
| K1-C    | 2.8               | 2.0                | 5.8                    | 4.0                    | 0.2                    | 0.0                    | 5.9                    | 10.3              | 13.5              |
| K1-M    | 3.8               | 1.9                | 6.3                    | 3.0                    | 0.0                    | 0.0                    | 7.0                    | 9.4               | 10.9              |
| К2      | 2.8               | 2.9                | 6.7                    | 6.2                    | 1.6                    | 0.0                    | 5.8                    | 14.6              | 16.7              |
| K2-N    | 2.6               | 1.5                | 4.8                    | 2.5                    | 0.0                    | 0.0                    | 4.2                    | 7.3               | 9.5               |
| K2-C    | 3.6               | 1.9                | 6.6                    | 3.1                    | 0.0                    | 0.0                    | 5.7                    | 9.2               | 11.8              |
| K2-M    | 3.8               | 1.9                | 6.3                    | 3.0                    | 0.0                    | 0.0                    | 7.1                    | 9.5               | 11.3              |

| Sample | Particle size (µm) | Crystalline size <sup>a</sup> (nm) |
|--------|--------------------|------------------------------------|
| Z      | 2.2×0.85           | 43.4                               |
| K1     | 0.75               | 36.5                               |
| K2     | 0.25               | 32.4                               |

 Table S5. The main particle sizes and crystalline sizes of prepared samples.

<sup>a</sup>Crystalline sizes were calculated through the Scherrer equation.

 Table S6. Si/Al ratio of samples obtained by different characterization methods.

| Characterization method | Sample | Z  | Z-N  | K1   | K1-N | K2   | K2-N |
|-------------------------|--------|----|------|------|------|------|------|
| XRF                     | Si/Al  | 50 | 42   | 48   | 42   | 49   | 45   |
|                         | Sample | K1 | K1-C | K1-M | К2   | K2-C | K2-M |
| XPS                     | Si/Al  |    | 42   | 29   |      | 36   | 30   |
| <sup>29</sup> Si NMR    | Si/Al  | 46 | 52   | 36   | 48   | 44   | 33   |

| Samples | Aqueous        | Oil fraction | Tar   | Solid <sup>a</sup> | $C_1$ - $C_4$ | CO    | $CO_2$ | Gas   | Total |
|---------|----------------|--------------|-------|--------------------|---------------|-------|--------|-------|-------|
|         | fraction (wt%) | (wt%)        | (wt%) | (wt%)              | (wt%)         | (wt%) | (wt%)  | (wt%) | (wt%) |
| К2      | 17.3           | 23.4         | 1.7   | 6.0                | 10.4          | 22.2  | 17.7   | 50.4  | 97.1  |
| K2_2    | 18.4           | 20.8         | 2.8   | 6.2                | 15.8          | 19.2  | 14.1   | 49.1  | 94.5  |
| К2_3    | 20.2           | 15.9         | 1.4   | 4.2                | 25.9          | 19.5  | 11.3   | 56.7  | 97.0  |
| K2_4    | 22.5           | 15.8         | 2.1   | 4.4                | 24.6          | 18.8  | 12.6   | 56.0  | 98.7  |
| K2-M    | 20.1           | 17.2         | 1.2   | 5.3                | 24.8          | 28.3  | 3.0    | 56.2  | 98.8  |
| K2-M_2  | 21.2           | 14.3         | 1.5   | 4.5                | 35.7          | 22.4  | 3.0    | 61.1  | 101.0 |
| K2-M_3  | 21.5           | 15.9         | 1.6   | 4.9                | 33.9          | 21.9  | 2.4    | 58.3  | 100.6 |
| K2-M_4  | 21.7           | 13.7         | 1.6   | 4.9                | 33.5          | 20.9  | 2.3    | 56.7  | 96.9  |
| K1-M    | 19.7           | 17.2         | 1.8   | 6.4                | 19.1          | 27.1  | 3.2    | 49.5  | 92.9  |
| K1-M_2  | 20.0           | 11.9         | 1.8   | 5.7                | 29.0          | 24.2  | 3.9    | 57.1  | 94.6  |
| K1-M_3  | 21.5           | 14.6         | 1.6   | 5.5                | 31.1          | 24.3  | 2.9    | 58.3  | 99.9  |
| K1-M_4  | 21.2           | 14.4         | 1.0   | 4.6                | 30.3          | 23.2  | 4.5    | 58.0  | 98.2  |

Table S7. Summary for detailed mass yield of liquid, solid and gas products of all samples during consecutive cycle test.

<sup>a</sup>Solid products represent for coke, char and tar products.

| all data below | / is g <sup>-1</sup> feed. |                    |                |                    |                           |                                |
|----------------|----------------------------|--------------------|----------------|--------------------|---------------------------|--------------------------------|
| Samples        | MAHs (g <sup>_</sup>       | Aromatics (g-      | PAHs/Aromatics | Alkylphenol (g     | Phenolics (g <sup>-</sup> | Oxygenates (g                  |
|                | <sup>1</sup> feed)         | <sup>1</sup> feed) |                | <sup>1</sup> feed) | <sup>1</sup> feed)        | <sup>1</sup> <sub>feed</sub> ) |
| К2             | 2.8                        | 6.7                | 0.43           | 5.8                | 14.6                      | 16.7                           |
|                |                            |                    |                |                    |                           |                                |

Table S8. Detailed product distribution of oil phase fraction during consecutive cycle test. The unit of

|        | <sup>1</sup> <sub>feed</sub> ) | <sup>1</sup> <sub>feed</sub> ) |      | <sup>1</sup> feed) | <sup>1</sup> <sub>feed</sub> ) | <sup>1</sup> feed) |
|--------|--------------------------------|--------------------------------|------|--------------------|--------------------------------|--------------------|
| К2     | 2.8                            | 6.7                            | 0.43 | 5.8                | 14.6                           | 16.7               |
| К2_2   | 2.7                            | 5.0                            | 0.36 | 6.5                | 13.5                           | 15.7               |
| K2_3   | 2.2                            | 4.2                            | 0.37 | 5.9                | 10.0                           | 11.7               |
| K2_4   | 1.5                            | 3.3                            | 0.44 | 6.3                | 10.9                           | 12.5               |
|        |                                |                                |      |                    |                                |                    |
| K2_M   | 3.8                            | 6.3                            | 0.30 | 7.1                | 9.5                            | 11.3               |
| K2-M_2 | 3.8                            | 4.9                            | 0.19 | 5.7                | 8.4                            | 9.4                |
| K2-M_3 | 3.4                            | 4.4                            | 0.18 | 6.4                | 10.1                           | 11.5               |
| K2-M_4 | 2.9                            | 3.9                            | 0.21 | 5.3                | 9.0                            | 9.8                |
|        |                                |                                |      |                    |                                |                    |
| K1-M   | 3.8                            | 6.3                            | 0.30 | 7.0                | 9.4                            | 10.9               |
| K1-M_2 | 3.6                            | 5.2                            | 0.23 | 4.2                | 6.1                            | 6.6                |
| K1-M_3 | 3.2                            | 4.3                            | 0.21 | 5.9                | 9.7                            | 10.2               |
| K1-M_4 | 2.9                            | 4.0                            | 0.23 | 5.9                | 9.4                            | 10.4               |

| RT / min | Compound name                         | Formula                         | Category      |
|----------|---------------------------------------|---------------------------------|---------------|
| 3.5      | 2-Methylfuran                         | C <sub>5</sub> H <sub>6</sub> O | Reactants     |
| 4.4      | Benzene                               | $C_6H_6$                        | BTEX          |
| 6.63     | Toluene                               | $C_7H_8$                        | BTEX          |
| 8.92     | Ethylbenzene                          | $C_8H_{10}$                     | BTEX          |
| 9.13     | o-Xylene                              | $C_8H_{10}$                     | BTEX          |
| 9.32     | p-Xylene                              | $C_8H_{10}$                     | BTEX          |
| 10.52    | o-Xylene                              | $C_8H_{10}$                     | BTEX          |
| 11.62    | 1-Ethyl-3-methyl-benzene              | $C_9H_{12}$                     | MAHs          |
| 11.69    | 1-Ethyl-3-methyl-benzene              | $C_9H_{12}$                     | MAHs          |
| 12.04    | 1-Ethyl-2-methyl-benzene              | $C_9H_{12}$                     | MAHs          |
| 12.16    | 1-Ethyl-3-methyl-benzene              | $C_9H_{12}$                     | MAHs          |
| 13.25    | 1,2,4-Trimethyl-benzene               | $C_9H_{12}$                     | MAHs          |
| 13.81    | 1-Hydroxy-2-propanone                 | $C_3H_6O_2$                     | Reactants     |
| 15.68    | Indane                                | $C_9H_{10}$                     | Aromatics     |
| 16.21    | 1-Methyl-2-(1-methylethyl)-benzene    | $C_{10}H_{14}$                  | MAHs          |
| 16.62    | 1,1,1-Trimethoxy-ethane               | $C_5H_{12}O_3$                  | Oxygenates    |
| 17.73    | Acetic acid                           | $C_2H_4O_2$                     | Reactants     |
| 18.14    | 1-(Acetyloxy)-2-propanone             | $C_5H_8O_3$                     | Oxygenates    |
| 18.63    | Indene                                | $C_9H_8$                        | Aromatics     |
| 18.65    | 2-Ethenyl-1,4-dimethyl-benzene        | $C_{10}H_{12}$                  | MAHs          |
| 19.15    | Benzofuran                            | $C_8H_6O$                       | Oxygenates    |
| 20.66    | 2,3-Dihydro-2-methyl-benzofuran       | $C_9H_{10}O$                    | Oxygenates    |
| 20.8     | 1,2,4,5-Tetramethyl-benzene           | $C_{10}H_{14}$                  | MAHs          |
| 21.05    | 1,4-Dihydronaphthalene                | $C_{10}H_{10}$                  | Aromatics     |
| 21.36    | 2-Methyl-benzofuran                   | $C_9H_8O$                       | Oxygenates    |
| 21.64    | 1-Methyl-1H-indene                    | $C_{10}H_{10}$                  | Aromatics     |
| 23.28    | 2-Hydroxy-benzaldehyde                | $C_7H_6O_2$                     | Oxygenates    |
| 23.41    | 1,1-Dimethyl-1H-indene                | $C_{11}H_{12}$                  | Aromatics     |
| 23.81    | 4,7-Dimethyl-benzofuran               | $C_{10}H_{10}O$                 | Oxygenates    |
| 23.98    | 2,3-Dihydro-4,7-dimethyl-1H-indene    | $C_{11}H_{14}$                  | Aromatics     |
| 24.12    | 4-(5-Methyl-2-furyl)butan-2-one       | $C_9H_{12}O_2$                  | Oxygenates    |
| 24.4     | 2,2'-Ethylidenebis(5-methylfuran)     | $C_{12}H_{14}O_2$               | Oxygenates    |
| 24.7     | Naphthalene                           | $C_{10}H_8$                     | PAHs          |
| 25.83    | 2,3-Dihydro-4,5,7-trimethyl-1H-indene | $C_{12}H_{16}$                  | Aromatics     |
| 26.02    | 2-Methyl-6-(2-propenyl)-phenol        | $C_{10}H_{12}O$                 | Alkyl phenols |
| 27.13    | 2-Methyl-naphthalene                  | $C_{11}H_{10}$                  | PAHs          |
| 27.3     | Guaiacol                              | $C_7H_8O_2$                     | Guaiacol      |
| 29.06    | 2-Ethyl-naphthalene                   | $C_{12}H_{12}$                  | PAHs          |
| 29.2     | 1-Methyl-naphthalene                  | $C_{11}H_{10}$                  | PAHs          |

**Table S9.** Major identified compounds (>0.5 %, relative peak area) in the oil phase fraction of the upgraded bio-oil by GC/MS. 2-Methylfuran, acetic acid and 1-Hydroxy-2-propanone haven't been found in all upgraded samples, and are listed below for reference, noted as Reactants.

| 29.26 | 2-Methoxy-4-methyl-phenol             | $C_8H_{10}O_2$                    | Phenolics     |
|-------|---------------------------------------|-----------------------------------|---------------|
| 29.4  | 1,7-Dimethyl-naphthalene              | $C_{12}H_{12}$                    | PAHs          |
| 29.54 | 1-(1-Methylethyl)-naphthalene         | $C_{13}H_{14}$                    | PAHs          |
| 30.24 | Phenol                                | $C_6H_6O$                         | Phenol        |
| 30.44 | 2-Hydroxy-3-(2-propenyl)-benzaldehyde | $C_{10}H_{10}O_2$                 | Phenolics     |
| 30.83 | 4-Ethyl-2-methoxy-phenol              | $C_9H_{12}O_2$                    | Phenolics     |
| 31.23 | 1,4,5-Trimethyl-naphthalene           | C <sub>13</sub> H <sub>14</sub>   | PAHs          |
| 31.5  | 2-Ethyl-phenol                        | $C_8H_{10}O$                      | Alkyl phenols |
| 31.61 | 2,5-Dimethyl-phenol                   | $C_8H_{10}O$                      | Alkyl phenols |
| 31.69 | 3-Methyl-phenol                       | C7H8O                             | Alkyl phenols |
| 31.82 | 3-Methyl-phenol                       | C7H8O                             | Alkyl phenols |
| 33.08 | 2-Ethyl-5-methyl-phenol               | $C_9H_{12}O$                      | Alkyl phenols |
| 33.16 | 4-Ethyl-phenol                        | $C_8H_{10}O$                      | Alkyl phenols |
| 33.26 | 3-Ethyl-phenol                        | C <sub>8</sub> H <sub>10</sub> O  | Alkyl phenols |
| 33.43 | 2-Methoxy-3-(2-propenyl)-phenol       | $C_{10}H_{12}O_2$                 | Phenolics     |
| 33.53 | 3,5-Diethyl-phenol                    | $C_{10}H_{14}O$                   | Alkyl phenols |
| 33.68 | 3,4-Dimethyl-phenol                   | C <sub>8</sub> H <sub>10</sub> O  | Alkyl phenols |
| 34.05 | 2-Methyl-5-(1-methylethyl)-phenol     | $C_{10}H_{14}O$                   | Alkyl phenols |
| 34.18 | 2-Ethyl-5-methyl-phenol               | $C_9H_{12}O$                      | Alkyl phenols |
| 34.26 | 2-Methoxy-4-(1-propenyl)-, (Z)-phenol | $C_{10}H_{12}O_2$                 | Phenolics     |
| 34.34 | 2,2'-Isopropylidenebis(5-methylfuran) | $C_{13}H_{16}O_2$                 | Phenolics     |
| 34.58 | 2-Methoxy-6-(1-propenyl)-phenol       | $C_{10}H_{12}O_2$                 | Phenolics     |
| 34.67 | 2-Methyl-6-(2-propenyl)-phenol        | C <sub>10</sub> H <sub>12</sub> O | Alkyl phenols |
| 34.71 | Eugenol                               | $C_{10}H_{12}O_2$                 | Eugenol       |
| 35.36 | Eugenol                               | $C_{10}H_{12}O_2$                 | Eugenol       |
| 35.42 | Phthalan                              | $C_8H_8O$                         | Oxygenates    |
| 35.46 | 2,3-Dihydro-1H-indenol                | $C_9H_{10}O$                      | Oxygenates    |
| 35.63 | Eugenol                               | $C_{10}H_{12}O_2$                 | Eugenol       |
| 35.7  | 2-Methyl-6-(2-propenyl)-phenol        | $C_{10}H_{12}O$                   | Alkyl phenols |
| 36.07 | 1-Methyl-3-(phenylmethyl)-benzene     | $C_{14}H_{14}$                    | PAHs          |
| 36.34 | 4-(2-Propenyl)-phenol                 | $C_9H_{10}O$                      | Alkyl phenols |
| 36.48 | 2-Ethyl-benzaldehyde                  | $C_9H_{10}O$                      | Oxygenates    |
| 36.87 | 2-Methyl-6-(2-propenyl)-phenol        | $C_{10}H_{12}O$                   | Alkyl phenols |
| 36.99 | 2-Methyl-6-(2-propenyl)-phenol        | $C_{10}H_{12}O$                   | Alkyl phenols |
| 37.9  | 1H-Indenol                            | $C_9H_8O$                         | Oxygenates    |
| 39.19 | 1,2-Benzenediol                       | $C_6H_6O_2$                       | Oxygenates    |
| 39.54 | Hydroquinone                          | $C_6H_6O_2$                       | Phenolics     |
| 39.79 | Anthracene                            | $C_{14}H_{10}$                    | PAHs          |
| 40.17 | 4-Methyl-1,2-benzenediol              | $C_7H_8O_2$                       | Oxygenates    |
| 43.76 | 2-Naphthalenol                        | $C_{10}H_8O$                      | Oxygenates    |
| 45.77 | 2-Methyl-1-naphthalenol               | $C_{11}H_{10}O$                   | Oxygenates    |
| 45.96 | 2-Methyl-1-naphthalenol               | $C_{11}H_{10}O$                   | Oxygenates    |
| 46.05 | 1,4-Naphthalenedione                  | $C_{10}H_6O_2$                    | Oxygenates    |



Figure S1. XRD patterns of all samples.



**Figure S2.**  $NH_3$ -TPD profiles of all samples. a) Micron size ZSM-5; b) 750nm size ZSM-5; c) 250nm size ZSM-5. Peak I and Peak II are assigned to the weak and strong acid sites, respectively. And Peak III represents for the additional acid sites with stronger acidity caused by the ammonia hydrothermal treatment.



**Figure S3.** Py-IR spectras of all samples. a) Micron size ZSM-5; b) 750nm size ZSM-5; c) 250nm size ZSM-5. The peaks at 1445cm<sup>-1</sup> and 1545cm<sup>-1</sup> are assigned to the absorption of pyridine on the Lewis and Brønsted acid sites, respectively.



Figure S4. Relative yield of three phenolic reactants: phenol, guaiacol and eugenol.



Figure S5. Detailed gaseous product selectivity of all samples.



**Figure S6.** Correlation between  $S_{meso}$  and a) selectivity of ethyl phenolics (relative peak area); b) ratio of PAHs to aromatics.



Figure S7. Primary conversion routes for phenol, guaiacol and eugenol during co-cracking with ethanol.



**Figure S8.** <sup>27</sup>Al ssMAS NMR spectras of nano samples. Inset is the magnification of marked area, and spectras are stacked with the same baseline.



Figure S9. Yield of water phase and oil phase product of all three catalysts during the consecutive cycle test.



Figure S10. Detailed gaseous product selectivity of three catalysts during the consecutive cycle test.