# **Supporting Information**

# Aromatic guanidines as highly active binary catalyst system for the fixation of CO<sub>2</sub> into cyclic carbonates under mild conditions

Ángela Mesías-Salazar,<sup>a</sup> Javier Martínez, \*<sup>a</sup> René S. Rojas, \*<sup>a</sup> Fernando Carrillo-Hemorsilla,<sup>b</sup> Alberto Ramos,<sup>b</sup> Rafael Fernández-Galán<sup>b</sup> and Antonio Antiñolo\*<sup>b</sup>

<sup>[a]</sup> Laboratorio de Química Inorgánica, Facultad de Química Universidad Católica de Chile, Casilla 306, Santiago-22 6094411, Chile. E-mail: <u>javiermartinez@uc.cl</u> and <u>rrojasg@uc.cl</u>

<sup>[b]</sup> Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación de Química Avanzada, Universidad de Castilla la Mancha, Campus Universitario, Ciudad Real, E-13071, Spain. E-Mail: <u>antonio.antinolo@uclm.es</u>

# **Table of Contents**

| Experimental Section                                                                                                           | <b>S</b> 1  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Scheme 1. Plausible and general mechanism for the synthesis of cyclic                                                          |             |  |  |  |  |  |
| carbonates through activation of CO <sub>2</sub> molecule by guanidines                                                        |             |  |  |  |  |  |
| Table S1. Synthesis of guanidines 1a-i by reaction of aromatic amines with                                                     |             |  |  |  |  |  |
|                                                                                                                                | G 4         |  |  |  |  |  |
| Scheme 2. Synthesis of aromatic guanidines Ia–i                                                                                |             |  |  |  |  |  |
| NMR data for guanidines 1f-i                                                                                                   |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of If in $CDCl_3$                                         |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C { <sup>1</sup> H}-NMR spectra of Ig in CDCl <sub>3</sub>                                |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C $\{^{1}H\}$ -NMR spectra of <b>1h</b> in CDCl <sub>3</sub>                              |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C{ <sup>1</sup> H}-NMR spectra of <b>1</b> i in CDCl <sub>3</sub>                         |             |  |  |  |  |  |
| Figure S1. <sup>1</sup> H-NMR spectra of DMAP, bis(guanidine) If and DMAP in 1:1                                               | SH          |  |  |  |  |  |
| molar ratio and 1f, DMAP and 2a in a molar ratio 1:1:1 (1f:DMAP:2a)                                                            | G1 <b>0</b> |  |  |  |  |  |
| Figure S2. <sup>1</sup> H-NMR spectra expansion of DMAP, bis(guanidine) If and                                                 | <b>S</b> 12 |  |  |  |  |  |
| DMAP in 1:1 molar ratio and 1f, DMAP and 2a in a molar ratio 1:1:1                                                             |             |  |  |  |  |  |
| (1f:DMAP:2a)                                                                                                                   | ~ • •       |  |  |  |  |  |
| Figure S3. <sup>1</sup> H-NMR spectra bis(guanidine) 1f and styrene oxide 2a at                                                | S13         |  |  |  |  |  |
| different molar ratios.                                                                                                        | <b>G14</b>  |  |  |  |  |  |
| Figure S4. <sup>1</sup> H-NMR spectra expansion bis(guanidine) If and styrene oxide 2a                                         | S14         |  |  |  |  |  |
| at different molar ratios. $\mathbf{T} = \frac{1}{2} \mathbf{G} \left( \mathbf{H} \right) \mathbf{N} \mathbf{G}$               | <b>01</b>   |  |  |  |  |  |
| Figure S5. <sup>13</sup> C{ <sup>1</sup> H}-NMR spectra bis(guanidine) If and styrene oxide 2a at                              | 815         |  |  |  |  |  |
| different molar ratios. $\Gamma_{12}^{(1)}$                                                                                    | 016         |  |  |  |  |  |
| Figure S6. <sup>13</sup> C{ <sup>1</sup> H}-NMR spectra expansion bis(guanidine) If and styrene                                | S16         |  |  |  |  |  |
| oxide 2a at different molar ratios.                                                                                            | 017         |  |  |  |  |  |
| Figure S7. Structure of the different organocatalysts employed in the                                                          | 817         |  |  |  |  |  |
| comparison of catalytic results                                                                                                | 010         |  |  |  |  |  |
| NMR data of cyclic carbonates                                                                                                  |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of stylene carbonate (3a) in CDCl <sub>3</sub>            | S21         |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of propylene carbonate ( <b>3b</b> ) in CDCl <sub>3</sub> | S22         |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of 1,2-butylene carbonate ( $3c$ ) in CDCl <sub>3</sub>   | S23         |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of 1,2-hexylene carbonate (3d) in CDCl <sub>3</sub>       | S24         |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of glycerol carbonate ( $3e$ ) in [D <sub>6</sub> ]DMSO   |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C- $\{^{1}H\}$ -NMR spectra of 3-Phenoxyproplylene carbonate (3f)                         | S26         |  |  |  |  |  |
| $\lim_{n \to \infty} \operatorname{DDCl}_3$                                                                                    | 0.07        |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of 3-chloroprophylene carbonate ( <b>3g</b> ) in          | 827         |  |  |  |  |  |
| $CDCl_3$                                                                                                                       | <b>GQ</b> 0 |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>15</sup> C-{ <sup>1</sup> H}-NMR spectra of 4-chlorostyrene carbonate $(3h)$ in                    | S28         |  |  |  |  |  |
| CDCl <sub>3</sub>                                                                                                              | ~~~         |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of 4-bromrostyrene carbonate (3i) in                      | \$29        |  |  |  |  |  |
|                                                                                                                                | <b>GQQ</b>  |  |  |  |  |  |
| <sup>1</sup> H-NMR, <sup>13</sup> C-{ <sup>1</sup> H}-NMR and <sup>19</sup> F-NMR spectra of $4-((2,2,3,3-1))$                 | \$30        |  |  |  |  |  |
| Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one $(3j)$ in CDCl <sub>3</sub>                                                      | <b></b>     |  |  |  |  |  |
| <sup>1</sup> H-NMR, <sup>13</sup> C-{ <sup>1</sup> H}-NMR and <sup>19</sup> F-NMR spectra of $44-(((2,2,3,3,4,4,5,5-$          |             |  |  |  |  |  |
| Octafluoropentyl)oxy)methyl)-1,3-dioxolan- 2-one ( <b>3</b> k) in CDCl <sub>3</sub>                                            |             |  |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of <i>cis</i> -1,2-cyclohexene carbonate ( <b>5a</b> ) in |             |  |  |  |  |  |
| $UDU_{13}$                                                                                                                     | 02 <i>-</i> |  |  |  |  |  |
| "H-NMK and " $C-{^{H}}-NMK$ spectra of <i>cis</i> -1,2-cyclopentano carbonate (5b)                                             | 835         |  |  |  |  |  |
|                                                                                                                                |             |  |  |  |  |  |
|                                                                                                                                |             |  |  |  |  |  |

| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of <i>cis</i> -2,3-butene carbonate (5c) in         | S36 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| CDCl <sub>3</sub>                                                                                                        |     |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of <i>trans</i> -2,3-butene carbonate (5d) in       | S37 |  |  |  |  |
| CDCl <sub>3</sub>                                                                                                        |     |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C- $\{^{1}H\}$ -NMR spectra of <b>1f</b> and DMAP in a 1:1 molar ratio              | S38 |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra of <b>1f</b> , DMAP and <b>2a</b> in a 1:1:1 molar  | S39 |  |  |  |  |
| ratio                                                                                                                    |     |  |  |  |  |
| <sup>1</sup> H NMR spectra of compound <b>1f</b> and compound <b>1f</b> with CO <sub>2</sub> in CDCl <sub>3</sub>        | S40 |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra compound <b>1f</b> , styrene oxide <b>2a</b> and    | S41 |  |  |  |  |
| TBAI in a molar ratio 1:4:2 ( <b>1f:2a</b> :TBAI)                                                                        |     |  |  |  |  |
| DEPT-135 and g-HSQC spectra compound <b>1f</b> , styrene oxide <b>2a</b> and TBAI in a                                   |     |  |  |  |  |
| molar ratio 1:4:2 ( <b>1f:2a</b> :TBAI)                                                                                  |     |  |  |  |  |
| <sup>1</sup> H-NMR and <sup>13</sup> C-{ <sup>1</sup> H}-NMR spectra compound <b>1f</b> , styrene oxide <b>2a</b> , TBAI | S43 |  |  |  |  |
| and $CO_2$ in a molar ratio 1:4:2 ( <b>1f</b> : <b>2a</b> :TBAI)                                                         |     |  |  |  |  |
| DEPT-135 spectrum compound 1f, styrene oxide 2a, TBAI and CO <sub>2</sub> in a                                           | S44 |  |  |  |  |
| molar ratio 1:4:2 (1f:2a:TBAI)                                                                                           |     |  |  |  |  |
| g-HSQC spectrum of compound 1f, styrene oxide 2a, TBAI and CO <sub>2</sub> in a                                          | S45 |  |  |  |  |
| molar ratio 1:4:2 ( <b>1f:2a</b> :TBAI)                                                                                  |     |  |  |  |  |
| References                                                                                                               | S46 |  |  |  |  |

#### **Experimental Section**

**General Procedures**. Reagent-grade solvents were obtained from E. Merck. Toluene was distilled from benzophenone ketyl, The compounds aniline, 1,4-diaminobencene, *N*,*N*'-Diisopropylcarbodiimide, 4- (trifluoromethyl)aniline, 4-aminobenzonitrile, *N*,*N*'-Dicyclohexylcarbodiimide, 2,4,6-trimethylaniline, ZnEt<sub>2</sub>, Zn(OTf)<sub>2</sub>, B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, epoxides, Bu<sub>4</sub>NBr, Bu<sub>4</sub>NI, Bu<sub>4</sub>NCl, Bu<sub>4</sub>NF, PPNCl and DMAP were purchased and used as received. The guanidines **1a–e** were prepared according to published procedures.<sup>1–3</sup>

The following instruments were used for the physical characterization of the compounds. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Avance-400 spectrometer. Chemical shifts and the coupling constants are reported in parts per million (SiMe<sub>4</sub> as standard) and Hertz, respectively. Most of the NMR assignments were supported by additional 2D experiments and the numbers of scans used for <sup>13</sup>C NMR ranged from 0.5 to 2 K depending on the sample concentration. FT-IR spectra were recorded on a Bruker Vector-22 spectrophometer using KBr pellets and the infrared frequencies are reported in cm<sup>-1</sup>. Mass spectra were acquired using a Micro Tof (Bruker) or a Clarus SQ 8T GC/MS (PerkinElmer). Elemental analysis data were recorded on a Foss-Heraeus CHNO-Rapid analyzer.

#### General procedure for the synthesis of guanidines catalysed by ZnEt<sub>2</sub>, Zn(Otf)<sub>2</sub> and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>

In a glovebox, a solution of amine (6.00 mmol) in toluene (20 mL) was added to a solution of the catalyst  $[\text{ZnEt}_2, \text{Zn}(\text{OTf})_2 \text{ or } B(C_6F_5)_3]$  (0.09 mmol) in toluene (5 mL) in a Schlenk tube. The carbodiimide (6.00 mmol) was then added to the above reaction mixture. The Schlenk tube was taken outside the glovebox, and the reaction was carried out at 50 °C for 2 h. The solvent was removed under reduced pressure, and the residue was extracted with diethyl ether and filtered throughout silica to give a clear solution, and silica was washed with additional diethyl ether. The solvent was removed under vacuum, and the residue was recrystallised from ether to provide the solid guanidine products.

## General procedure for catalyst screening at 1 bar pressure

Styrene oxide **2a** (1.66 mmol), aromatic monoguanidines **1a–e** (33.2 µmol) and bis(guanidines) **1f–i** (16.6 µmol) and TBAI (33.2 µmol) were placed in an individual glass reaction tubes with a magnetic stirrer bar in a multi-point reactor Carousel 12 Place Reaction Station under constant pressure of 1bar of CO<sub>2</sub>. The reaction mixture was stirred at 70 °C for 24 h, then the conversion of styrene oxide **2a** into styrene carbonate **3a** was determined by analysis of a sample by <sup>1</sup>H NMR spectroscopy.

#### General procedure for catalyst screening at 10 bar pressure

Cyclohexene oxide **4a** (1.66 mmol), bis(guanidine) **1f** (16.6–33.2  $\mu$ mol) and TBAI (33.2–66.4  $\mu$ mol) were placed in a stainless steel reactor with a magnetic stirrer bar and it was pressurized to 10 bar. The reaction mixture was stirred at 70–85 °C for 24 h, then the conversion of cyclohexene oxide **4a** into cyclohexene carbonate **5a** was determined by analysis of a sample by <sup>1</sup>H NMR spectroscopy.

#### General procedure for the synthesis of cyclic carbonates at 1 bar pressure

An epoxide **2a–k** (1.66 mmol), guanidine **1f** (16.6  $\mu$ mol) and TBAI (33.2  $\mu$ mol) were placed an individual glass reaction tubes with a magnetic stirrer bar in a multi-point reactor under constant pressure of 1 bar of CO<sub>2</sub>. The reaction mixture was stirred at 70 °C for 24 h. The conversion of epoxide to cyclic carbonate was then determined by analysis of a sample by <sup>1</sup>H NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH<sub>2</sub>Cl<sub>2</sub> to remove the catalyst. The eluent was evaporated in vacuo to give either the pure cyclic carbonate or a mixture of cyclic carbonate and unreacted epoxide. In the latter case, the mixture was purified by flash chromatography using a solvent system of first hexane, then hexane:EtOAc (9:1), then hexane:EtOAc (6:1) then hexane:EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates **3a–k** are all known compounds and the spectroscopic data for samples prepared using bis(guanidine) **1f** were consistent with those reported in the literature.<sup>6–9</sup>

## General procedure for the synthesis of cyclic carbonates at 10 bar pressure

The synthesis an purification of cyclic carbonates **5a–d** were carried out in a manner identical than cyclic carbonates **3a–k** using guanidine **1f** (33.2 µmol) and TBAI (66.4 µmol) as binary catalyst system. The reaction mixture was placed in a stainless steel reactor with a magnetic stirrer bar. Cyclic carbonates **5a–d** are all known compounds and the spectroscopic data for samples prepared using bis(guanidine) **1f** were consistent with those reported in the literature.<sup>6–8</sup>



Scheme 1. Plausible and general mechanism for the synthesis of cyclic carbonates through activation of  $CO_2$  molecule by guanidines.

| Entry          | Cat.                 | Amine                               | R-N=C=N-R                                       | Guanidine                     |
|----------------|----------------------|-------------------------------------|-------------------------------------------------|-------------------------------|
|                |                      |                                     | (n, equiv)                                      | (Conv. %) <sup>b</sup>        |
| 11             | ZnEt <sub>2</sub>    | NH <sub>2</sub>                     | R = i Pr(1)                                     | 1a (>99)                      |
| 22             | Zn(OTf) <sub>2</sub> | NH <sub>2</sub>                     | $\mathbf{R}=\mathbf{C}\mathbf{y}\left(1\right)$ | <b>1b</b> (96)                |
| 31             | ZnEt <sub>2</sub>    |                                     | $\mathbf{R} = {^{i}}\mathbf{Pr}(1)$             | 1c (>99)                      |
| 42             | Zn(OTf) <sub>2</sub> | NC-NH <sub>2</sub>                  | $\mathbf{R}={^{i}}\mathbf{Pr}\left(1\right)$    | 1d (92)                       |
| 53             | $B(C_{6}F_{5})_{3}$  | F <sub>3</sub> C-V-NH <sub>2</sub>  | $\mathbf{R} = {^{i}}\mathbf{Pr}\left(1\right)$  | 1e (27)                       |
| 6 <sup>c</sup> | ZnEt <sub>2</sub>    | NH2-NH2                             | $R = {^{i}Pr}(2)$                               | <b>1f</b> (95) <sup>d,e</sup> |
| 7°             | ZnEt <sub>2</sub>    | NH2-NH2                             | R = Cy(2)                                       | <b>g</b> (>99) <sup>e</sup>   |
| 8°             | ZnEt <sub>2</sub>    | H <sub>2</sub> N<br>NH <sub>2</sub> | $\mathbf{R} = {^{i}}\mathbf{Pr} (2)$            | 1h (>99)°                     |
| 9°             | ZnEt <sub>2</sub>    | H <sub>2</sub> N<br>NH <sub>2</sub> | R = Cy(2)                                       | 1i (93) <sup>e</sup>          |

Table S1. Synthesis of guanidines 1a-i by reaction of aromatic amines with carbodiimides.<sup>a</sup>

<sup>a</sup> Conditions: amine (1 mmol) and carbodiimide (1 or 2 mmol). <sup>b</sup> Conversion were determined by <sup>1</sup>H NMR spectroscopy. <sup>c</sup> Reactions were carried out at 50 <sup>o</sup>C in toluene for 1 h. <sup>d</sup> Product also obtained in reference 4. <sup>e</sup> Product also obtained in reference 5.

# Synthesis of guanidines 1a-g



<sup>1</sup>Prepared according to published procedures (ref 1); <sup>2</sup>Prepared according to published procedures (ref 2); <sup>3</sup>Prepared according to published procedures (ref 3).

# Synthesis of guanidines 1h and 1i



Scheme 2. Synthesis of aromatic guanidines 1a-i

# NMR data for guanidines 1f-i

Synthesis of 2,2'-(1,4-phenylene)bis(1,3-diisopropylguanidine) (1f). In a 250 mL round bottom flask, *p*-phenylenediamine (0.65 g, 6.0 mmol) was dissolved in dry toluene (50 mL). N,N'-diisopropylcarbodiimide (1.51 g, 12.0 mmol) and a solution of ZnEt<sub>2</sub> (1 M in hexane, 0.09 mL, 0.09 mmol) was added and the mixture was heated to 50 °C and stirred for 1 h. Then, the solvent was removed under vacuum, and the product 1f was obtained as a white solid. Yield 95 % (2.05 g). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 297 K):  $\delta = 6.75$  (s, 2H, Ar-H), 3.72 (brs, 2H, CH-<sup>*i*</sup>Pr), 3.52 (brs, 2H, NH), 1.13 ppm (d, <sup>3</sup>J<sub>HH</sub> = 6.1 Hz, 12H, CH<sub>3</sub>-<sup>*i*</sup>Pr); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 297 K):  $\delta = 150.8$  (C=N), 144.2 (Ar-C), 124.6 (Ar-CH), 43.3 (CH-<sup>*i*</sup>Pr), 23.5 ppm (CH<sub>3</sub>-<sup>*i*</sup>Pr); IR (FTIR): 3332–3232 (NH), 1612 (C=N) cm<sup>-1</sup>. HRMS (ESI) for C<sub>10</sub>H<sub>35</sub>N<sub>6</sub> [M+H]<sup>+</sup>: m/z calcd: 360.551, found: 360.562.

Synthesis of 2,2'-(1,4-phenylene)bis(1,3-dicyclohexylguanidine) (1g). The synthesis of compound 1g was carried out in a manner identical with that for 1f, using *p*-phenylenediamine (0.65 g, 6.0 mmol), N, N'- dicyclohexylcarbodiimide (2,48 g, 12.0 mmol) and a solution of ZnEt<sub>2</sub> (1 M in hexane, 0.09 mL, 0.09 mmol). The product 1g was obtained as a white solid. Yield: 99 % (3.09 g). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 297 K):  $\delta = 6.71$  (s, 2H, Ar-H), 3.67–3.16 (brs, 4H, NH, CH-Cy), 2.07–1.87 (m, 4H, CH<sub>2</sub>-Cy), 1.70–1.48 (m, 6H, CH<sub>2</sub>-Cy), 1.38–1.21 (m, 4H, CH<sub>2</sub>-Cy), 1.20–0.95 ppm (m, 6H, CH<sub>2</sub>-Cy); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 297 K):  $\delta = 150.6$  (C=N), 144.3 (Ar-C), 124.6 (Ar-CH), 50.2 (CH-Cy), 33.8 (CH<sub>2</sub>-Cy), 25.8 (CH<sub>2</sub>-Cy), 25.0 ppm (CH<sub>2</sub>-Cy); IR (FTIR): 3368–3067 (NH), 1604 (C=N) cm<sup>-1</sup>. HRMS (ESI) for C<sub>32</sub>H<sub>52</sub>N<sub>6</sub> [M+H]<sup>+</sup>: m/z calcd: 521.432, found: 521.428.

Synthesis 2,2'-(naphthalene-1,5-diyl)bis(1,3-diisopropylguanidine) (1h). The synthesis of compound 1h was carried out in a manner identical with that for 1f, using p- 1,5-diaminonaphthalene (0,95 g, 6.0 mmol), N,N'-diisopropylcarbodiimide (1.51 g, 12.0 mmol) and a solution of ZnEt<sub>2</sub> (1 M in hexane, 0.09 mL, 0.09 mmol). the product 1h was obtained as a white solid. Yield: 99 % (2.49 g). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 297 K):  $\delta$  = 7.66 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.3 Hz, 1H, Ar-H), 7.29 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.6 Hz, 1H, Ar-H), 6.87 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.2 Hz, 1H, Ar-H), 3.85 (m, 2H, CH-*i*Pr), 3.56 (brs, 2H, NH), 1.15 ppm (d, <sup>3</sup>*J*<sub>HH</sub> = 6.4 Hz, 12H, CH<sub>3</sub>-*i*Pr); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 297 K):  $\delta$  = 150.2 (C=N), 146.5 (Ar-C), 130.9 (Ar-C), 125.4 (Ar-CH), 118.3 (Ar-CH), 118.2 (Ar-CH), 43.5 (CH-*i*Pr),

23.6 ppm (CH<sub>3</sub>-*i*Pr); IR (FTIR): 3313–3259 (NH), 1649 (C=N) cm<sup>-1</sup>. HRMS (ESI) for  $C_{24}H_{38}N_6$  [M+H]<sup>+</sup>: m/z calcd: 411.125, found: 411.132.

**Synthesis of 2,2'-(naphthalene-1,5-diyl)bis(1,3-dicyclohexylguanidine) (1i).** The synthesis of compound **1i** was carried out in a manner identical with that for **1f**, using p-1,5-diaminonaphthalene (0,95 g, 6.0 mmol), N, N'- dicyclohexylcarbodiimide (2,48 g, 12.0 mmol) and a solution of ZnEt<sub>2</sub> (1 M in hexane, 0.09 mL, 0.09 mmol). the product **1i** was obtained as a white solid. Yield: 93 % (3.41 g).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 297 K):  $\delta$  = 7.63 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.4 Hz, 1H, Ar-H), 7.26 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.8 Hz, 1H, Ar-H), 6.86 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 1H, Ar-H), 3.65–3.17 (brs, 4H, NH, CH-Cy), 2.07–1.95 (m, 4H, CH<sub>2</sub>-Cy), 1.70–1.51 (m, 6H, CH<sub>2</sub>-Cy), 1.41–1.21 (m, 4H, CH<sub>2</sub>-Cy), 1.17–0.95 ppm (m, 6H, CH<sub>2</sub>-Cy); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 297 K):  $\delta$  = 149.9 (C=N), 146.6 (Ar-C), 130.9 (Ar-C), 125.3 (Ar-CH), 118.4 (Ar-CH), 118.1 (Ar-CH), 50.3 (CH-Cy), 34.0 (CH<sub>2</sub>-Cy), 25.8 (CH<sub>2</sub>-Cy), 25.0 ppm (CH<sub>2</sub>-Cy); IR (FTIR): 3354–3293 (NH), 1621 (C=N) cm<sup>-1</sup>. HRMS (ESI) for C<sub>36</sub>H<sub>54</sub>N<sub>6</sub> [M+H]<sup>+</sup>: m/z calcd: 571.448, found: 571.442.

<sup>1</sup>H-NMR of 2,2'-(1,4-phenylene)bis(1,3-diisopropylguanidine) (1f) in CDCl<sub>3</sub>



<sup>13</sup>C-{<sup>1</sup>H}-NMR of 2,2'-(1,4-phenylene)bis(1,3-diisopropylguanidine) (1f) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of 2,2'-(1,4-phenylene)bis(1,3-dicyclohexylguanidine) (1g) in CDCl<sub>3</sub>



<sup>13</sup>C-{<sup>1</sup>H}-NMR of 2,2'-(1,4-phenylene)bis(1,3-dicyclohexylguanidine) (**1g**) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of 2,2'-(naphthalene-1,5-diyl)bis(1,3-diisopropylguanidine) (1h) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of 2,2'-(naphthalene-1,5-diyl)bis(1,3-diisopropylguanidine) (1h) in CDCl\_3



<sup>1</sup>H-NMR of 2,2'-(naphthalene-1,5-diyl)bis(1,3-dicyclohexylguanidine) (1i) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^1\text{H}\}\text{-NMR}$  of 2,2'-(naphthalene-1,5-diyl)bis(1,3-dicyclohexylguanidine) (1i) in CDCl\_3





**Figure S1.** (a) <sup>1</sup>H NMR spectrum of DMAP in CDCl<sub>3</sub>. (b) <sup>1</sup>H NMR spectrum of compound **1f** and DMAP in a molar ratio 1:1 (**1f**:DMAP) at 70 °C for one hour in CDCl<sub>3</sub>. (c) <sup>1</sup>H NMR spectrum of compound **1f**, DMAP and styrene oxide **2a**, in a molar ratio 1:1:1 (**1f**:DMAP:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>.



**Figure S2.** <sup>1</sup>H NMR range 6.2–8.4 ppm (**a**) <sup>1</sup>H NMR spectrum of DMAP in CDCl<sub>3</sub>. (**b**) <sup>1</sup>H NMR spectrum of compound **1f** and DMAP in a molar ratio 1:1 (**1f**:DMAP) at 70 °C for one hour in CDCl<sub>3</sub>. (**c**) <sup>1</sup>H NMR spectrum of compound **1f**, DMAP and styrene oxide **2a**, in a molar ratio 1:1:1 (**1f**:DMAP:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>.



**Figure S3.** (a) <sup>1</sup>H NMR spectrum of compound **1f** in CDCl<sub>3</sub>. (b) <sup>1</sup>H NMR spectrum of compound **1f** and styrene oxide **2a** in a molar ratio 1:1 (**1f**:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>. (c) <sup>1</sup>H NMR spectrum of compound **1f** and styrene oxide **2a**, in a molar ratio 1:2 (**1f**:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>. (d) <sup>1</sup>H NMR spectrum of compound **1f** and styrene oxide **2a**, in a molar ratio 1:4 (**1f**:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>.



**Figure S4.** <sup>1</sup>H NMR range 3.35–4.20 ppm (**a**) <sup>1</sup>H NMR spectrum of compound **1f** in CDCl<sub>3</sub>. (**b**) <sup>1</sup>H NMR spectrum of compound **1f** and styrene oxide **2a** in a molar ratio 1:1 (**1f**:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>. (**c**) <sup>1</sup>H NMR spectrum of compound **1f** and styrene oxide **2a**, in a molar ratio 1:2 (**1f**:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>.



Figure S5. (a)  ${}^{13}C{}^{1}H$  NMR spectrum of styrene oxide 2a in CDCl<sub>3</sub>. (b)  ${}^{13}C{}^{1}H$  NMR spectrum of compound 1f and styrene oxide 2a in a molar ratio 1:1 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (c)  ${}^{13}C{}^{1}H$  NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (d)  ${}^{13}C{}^{1}H$  NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (d)  ${}^{13}C{}^{1}H$  NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:4 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C{<sup>1</sup>H} NMR range 51.1–52.8 ppm (a) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of styrene oxide 2a in CDCl<sub>3</sub>. (b) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound 1f and styrene oxide 2a in a molar ratio 1:1 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (c) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (d) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (d) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>. (d) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound 1f and styrene oxide 2a, in a molar ratio 1:2 (1f:2a) at 70 °C for one hour in CDCl<sub>3</sub>.



**Figure S7.** Structure of the different organocatalysts employed in the comparison of catalytic results (Table 4 on the Main Article)

# NMR of cyclic carbonates

**Styrene carbonate (3a):** Obtained as a white solid. (210.6 mg, 88 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 7.43-7.47$  (m, 3H, ArH), 7.32–7.36 (m, 2H, ArH), 5.66 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, 1H, PhCHO), 4.79 (t, <sup>3</sup>*J*<sub>HH</sub> =8.5 Hz, 1H, OCH<sub>2</sub>), 4.32 ppm (t, <sup>3</sup>*J*<sub>HH</sub> = 7.5 Hz, 1H, OCH<sub>2</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl3, 298 K):  $\delta = 155.1$ , 136.1, 129.9, 129.4, 126.1, 78.2, 71.4 ppm.

**Propylene carbonate (3b):** Obtained as a colourless liquid (159.3 mg, 94 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.79-4.88$  (m, 1H, OCH), 4.53 (t, , <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, OCH<sub>2</sub>), 4.00 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.5 Hz, OCH<sub>2</sub>), 1.46 ppm (d, , <sup>3</sup>*J*<sub>HH</sub> = 6.5 Hz, 3H, CH<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 155.0$ , 73.6, 70.6, 19.4 ppm.

**1,2-Butylene carbonate (3c):** Obtained as a colourless liquid (179.3 mg, 93 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.62-4.70$  (m, 1H, OCH), 4.52 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.5 Hz, 1H, OCH<sub>2</sub>), 4.08 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.5 Hz, 1H, OCH<sub>2</sub>), 1.70–1.86 (m, 2H, CH<sub>2</sub>), 1.03 ppm (t, <sup>3</sup>*J*<sub>HH</sub> = 7.5 Hz, 3H, CH<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 155.2$ , 78.1, 69.1, 27.0, 8.6 ppm.

**1,2-Hexylene carbonate (3d):** Obtained as a colourless liquid (215.4 mg, 90 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.65-4.73$  (m, 1H, OCH), 4.52 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, 1H, OCH<sub>2</sub>), 4.06 (dd, <sup>3</sup>*J*<sub>HH</sub> = 8.5, 7.0 Hz, 1H, OCH<sub>2</sub>), 1.76–1.86 (m, 1H, CH<sub>2</sub>), 1.63–1.73 (m, 1H, CH<sub>2</sub>), 1.31–1.49 (m, 4H, 2OCH<sub>2</sub>), 0.92 ppm (t, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 3H, CH<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 155.0$ , 77.0, 69.4, 33.5, 26.4, 22.2, 13.8 ppm.

**Glycerol carbonate (3e):** Obtained as a colourless liquid (178.4 mg, 91 %); <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]DMSO, 298 K):  $\delta = 5.23$  (t, <sup>3</sup>*J*<sub>HH</sub> = 5.5 Hz, 1H, OH), 4.74–4.80 (m, 1H, OCH), 4.47 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, 1H, CH<sub>2</sub>O), 4.26 (dd, <sup>3</sup>*J*<sub>HH</sub> = 8.0, 5.5 Hz, 1H, CH<sub>2</sub>O), 3.60–3.68 (m, 1H, CH<sub>2</sub>OH), 3.45–3.52 ppm (m, 1H, CH<sub>2</sub>OH); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, [D<sub>6</sub>]DMSO, 298 K):  $\delta = 155.6$ , 77.6, 66.3, 61.0 ppm.

**3-Phenoxyproplylene carbonate (3f):** Obtained as a white solid. (268.3 mg, 83 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 7.27-7.33$  (m, 2H, 2OArH), 7.02 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.5 Hz, 1H, ArH), 6.88–6.94 (m, 2H, 2OArH), 4.99–5.06 (m, 1H, OCH), 4.61 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.5 Hz, 1H, OCH<sub>2</sub>), 4.55 (dd, <sup>3</sup>*J*<sub>HH</sub> = 9.0, 6.0 Hz, 1H, OCH<sub>2</sub>), 4.24 (dd, <sup>3</sup>*J*<sub>HH</sub> = 10.5, 4.5 Hz, 1H, CH<sub>2</sub>OPh), 4.15 ppm (dd, <sup>3</sup>*J*<sub>HH</sub> = 10.5, 3.5 Hz, 1H, CH<sub>2</sub>OPh); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 157.8$ , 154.6, 129.7, 122.0, 114.6, 74.1, 66.9, 66.2 ppm.

**3-Chloropropylene carbonate (3g):** Obtained as a colourless liquid. (210.8 mg, 93 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.92-5.01$  (m, 1H, OCH), 4.59 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.5 Hz, 1H, CH<sub>2</sub>Cl), 4.42 (dd, <sup>3</sup>*J*<sub>HH</sub> = 8.5, 5.5 Hz, 1H, CH<sub>2</sub>Cl), 3.78 (dd, <sup>3</sup>*J*<sub>HH</sub> = 12.0, 5.5 Hz, 1H, CH<sub>2</sub>O), 3.74 ppm (dd, <sup>3</sup>*J*<sub>HH</sub> = 12.5, 3.5 Hz, CH<sub>2</sub>O); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 154.7$ , 74.8, 67.5, 44.2 ppm. **4-Chlorostyrene carbonate (3h):** Obtained as a white solid. (300.0 mg, 91 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 7.36-7.42$  (m, 2H, ArH), 7.27-7.33 (m, 2H, ArH), 5.65 (t,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 1H, OCH), 4.79 (t,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 1H, OCH), 4.29 ppm (t,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 1H, OCH<sub>2</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 154.5$ , 135.8, 134.3, 129.4, 127.3, 77.2, 71.0 ppm.

**4-Bromostyrene carbonate (3i):** Obtained as a white solid. (360.5 mg, 89 %) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 7.31-7.36$  (m, 2H, ArH), 7.20–7.26 (m, 2H, ArH), 5.62 (t,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 1H, OCH), 4.77 (t,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 1H, OCH<sub>2</sub>), 4.34 ppm (dd,  ${}^{3}J_{\text{HH}} = 8.8$ , 7.6 Hz, 1H, OCH<sub>2</sub>);  ${}^{13}C{}^{1}\text{H}$  NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 154.5$ , 135.7, 134.3, 129.5, 127.3, 77.2, 70.0 ppm.

**4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one (3j)**. Obtained as a colourless liquid (350.6 mg, 91 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 5.83$  (tt, <sup>3</sup>*J*<sub>HH</sub> = 52.8, 4.8 Hz, 1H, CHCF<sub>2</sub>), 4.76–4.81 (m, 1H, OCH), 4.45 (t, <sup>3</sup>*J*<sub>HH</sub> = 7.6 Hz, 1H, OCH<sub>2</sub>), 4.29 (dd, <sup>3</sup>*J*<sub>HH</sub> = 7.6, 6.0 Hz, 1H, OCH<sub>2</sub>), 3.87 (dt, <sup>3</sup>*J*<sub>HH</sub> = 12.8, 2.0 Hz, 2H OCH<sub>2</sub>CF<sub>2</sub>), 3.80 (dd, <sup>3</sup>*J*<sub>HH</sub> = 11.2, 3,2 Hz, 1H, OCH<sub>2</sub>CH), 3.70 ppm (dd, <sup>3</sup>*J*<sub>HH</sub> = 11.2, 4.0 Hz, 1H, OCH<sub>2</sub>CH); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 159.9$  (C=O), 113.9 (tt, <sup>3</sup>*J*<sub>CF</sub> = 994.0, 107.6 Hz, CH*CF*<sub>2</sub>), 108.2 (tt, <sup>3</sup>*J*<sub>CF</sub> = 991.6, 138.8 Hz, CF<sub>2</sub>), 77.4 (CH), 70,4 (CH<sub>2</sub>), 67.4 (t, <sup>3</sup>*J*<sub>CF</sub> = 112.4 Hz, CF<sub>2</sub>*CH*<sub>2</sub>), 64.9 ppm (CH<sub>2</sub>). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = (-139.3)$ –(-139.4) (m, 2F), (-125.1)–(-125.0) ppm (m, 2F).

**4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan- 2-one (3k).** Obtained as a colourless liquid. (512.8 mg, 93 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 6.01$  (tt, <sup>3</sup>*J*<sub>HH</sub> = 52.0, 5.6 Hz, 1H, CHF<sub>2</sub>), 4.75–4.83 (m, 1H, OCH), 4.46 (t, <sup>3</sup>*J*<sub>HH</sub> = 8.8 Hz, 1H, OCH<sub>2</sub>), 4.31 (dd, <sup>3</sup>*J*<sub>HH</sub> = 8.4, 6.0 Hz, 1H, OCH<sub>2</sub>), 3.90–4.10 (m, 2H, OCH<sub>2</sub>CF<sub>2</sub>), 3.83 (dd, <sup>3</sup>*J*<sub>HH</sub> = 11.2, 3.2 Hz, 1H, O*CH*<sub>2</sub>CH), 3.75 ppm (dd, <sup>3</sup>*J*<sub>HH</sub> = 11.2, 3.6 Hz, 1H, O*CH*<sub>2</sub>CH); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 153.8$  (C=O), 103.9–117.2 (m, 3 x CF<sub>2</sub>), 106.7 (tt, <sup>3</sup>*J*<sub>CF</sub> = 1009.2, 123.2 Hz, CHCF<sub>2</sub>), 73.8 (CH), 70,6 (CH<sub>2</sub>), 67.3 (t, <sup>3</sup>*J*<sub>CF</sub> = 102.8 Hz, CH<sub>2</sub>), 64.8 ppm (CH<sub>2</sub>).<sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = (-137.6)-(-136.7)$  (m, 2F), (-130.4)–(-129.5) (m, 2F), (-125.6)–(-125.7) (m, 2F), (-120.0)– (-120.1) ppm (m, 2F).

*cis*-1,2-Cyclohexene carbonate (5a): Obtained as a white solid. (191.9 mg, 82 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.71-4.64$  (m, 2H, CHO), 1.94–1.85 (m, 4H, 2 x CH<sub>2</sub>CHO), 1.68–1.57 (m, 2H, CH<sub>2</sub>), 1.46–1.37 ppm (m, 2H, CH<sub>2</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 155.3$ , 75.7, 26.8, 19.1 ppm.

*cis*-1,2-Cyclopentene carbonate (5b): Obtained as a white solid. (163.3 mg, 77 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 5.12-5.08$  (m, 2H, CHO), 2.19–2.12 (m, 2H, CH<sub>2</sub>), 1.85–1.73 (m, 2H, CH<sub>2</sub>), 1.71–1.61 ppm (m, 2H, CH<sub>2</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 155.4$ , 81.8, 33.1, 21.6.

*cis*-2,3-Butene carbonate (5c): Obtained colourless liquid in a 94:6 mixture of *cis*- and *trans*-isomers (114.3 mg, 59 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.85-4.77$  (m, 2H, CH<sub>*cys*</sub>), 4.34–4.28 (m, CH<sub>*trans*</sub>), 1.43 (d, J = 6.2 Hz, CH<sub>3*trans*</sub>), 1.35 ppm (d, J = 6.2 Hz, 6H, CH<sub>3*cis*</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 154.6$ , 79.9 (*trans*), 76.1, 18.3 (*trans*), 14.5 ppm.

*trans*-2,3-Butene carbonate (4d): Obtained as a white solid (128.6 mg, 67 %); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 4.86-4.79$  (m, CH<sub>cis</sub>), 4.36–4.28 (m, 2H, CH<sub>trans</sub>), 1.44 (d, J = 5.9 Hz, 6H, CH<sub>3trans</sub>), 1.35 ppm (d, J = 5.9 Hz, CH<sub>3cis</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 154.5$ , 79.9, 18.4, 14.4 (*cis*) ppm.

<sup>1</sup>H-NMR of styene carbonate (**3a**) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of styene carbonate (3a) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of propylene carbonate (**3b**) in  $CDCl_3$ 



 $^{13}\text{C-}\{^1\text{H}\}\text{-}\text{NMR}$  of propylene carbonate (3b) in CDCl\_3



<sup>1</sup>H-NMR of 1,2-butylene carbonate (3c) in CDCl<sub>3</sub>



 $^{13}C-\{^{1}H\}$ -NMR of 1,2-butylene carbonate (3c) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of 1,2-hexylene carbonate (3d) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of 1,2-hexylene carbonate (3d) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of glycerol carbonate (3e) in  $[D_6]DMSO$ 



 $^{13}\text{C-}\{^1\text{H}\}\text{-NMR}$  of glycerol carbonate (3e) in [D<sub>6</sub>]DMSO



<sup>1</sup>H-NMR of 3-Phenoxyproplylene carbonate (3f) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of 3-Phenoxyproplylene carbonate (3f) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of 3-chloroproplylene carbonate (**3g**) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of 4-chlorostyrene carbonate (3h) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of 4-chlorostyrene carbonate (3h) in CDCl\_3



<sup>1</sup>H-NMR of 4-bromrostyrene carbonate (3i) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^{1}\text{H}\}\text{-NMR}$  of 4-bromorostyrene carbonate (3i) in CDCl\_3



<sup>1</sup>H-NMR of 4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one (**3j**) in CDCl<sub>3</sub>



 $^{13}\text{C-}\{^1\text{H}\}\text{-NMR}$  of 4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one (3j) in CDCl\_3



<sup>19</sup>F-NMR of 4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one (**3j**) in CDCl<sub>3</sub>



 $^1\text{H-NMR}$  of 4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan- 2-one (3k) in CDCl\_3



 $^{13}C-\{^{1}H\}-NMR$  of 4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan- 2- one (**3k**) in CDCl<sub>3</sub>



 $^{19}\mbox{F-NMR}$  of 4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan- 2-one (3k) in CDCl\_3



<sup>1</sup>H-NMR of *cis*-1,2-cyclohexene carbonate (**5a**) in CDCl<sub>3</sub>



<sup>13</sup>C-{<sup>1</sup>H}-NMR *cis*-1,2-cyclohexene carbonate (**5**a) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of *cis*-1,2-cyclopentane carbonate (**5b**) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of *cis*-2,3-Butene carbonate (5c) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR of *trans*-2,3-Butene carbonate (5d) in CDCl<sub>3</sub>



<sup>1</sup>H-NMR spectrum of compound **1f** and DMAP in a molar ratio 1:1 (**1f**:DMAP) at 70  $^{\circ}$ C for one hour in CDCl<sub>3</sub>



 $^{13}C\{^{1}H\}$ -NMR spectrum of compound 1f and DMAP in a molar ratio 1:1 (1f:DMAP) at 70 °C for one hour in CDCl<sub>3</sub>



<sup>1</sup>H-NMR spectrum of compound **1f**, DMAP and styrene oxide **2a** in a molar ratio 1:1:1 (**1f**:DMAP:**2a**) at 70 °C for one hour in CDCl<sub>3</sub>



<sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of compound **1f**, DMAP and styrene oxide **2a** in a molar ratio 1:1:1 (**1f**:DMAP:**2a**) at 70 °C for one hour in  $CDCl_3$ 



 $^1\mathrm{H}$  NMR spectrum of compound  $\mathbf{1f}$  in CDCl\_3



 $^1\text{H}$  NMR spectrum of compound 1f and CO\_2 at 70 °C for 24 hours in CDCl\_3



<sup>1</sup>H-NMR spectrum of compound **1f**, styrene oxide **2a** and TBAI in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for one hour in CDCl<sub>3</sub>



<sup>13</sup>C-{<sup>1</sup>H}-NMR spectrum of compound **1f**, styrene oxide **2a** and TBAI in a molar ratio 1:4:2 (**1f:2a**:TBAI) at 70 °C for one hour in CDCl<sub>3</sub>



DEPT-135 spectrum of compound **1f**, styrene oxide **2a** and TBAI in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for one hour in CDCl<sub>3</sub>



g-HSQC spectrum of compound **1f**, styrene oxide **2a** and TBAI in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for one hour in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of compound **1f**, styrene oxide **2a**, TBAI and CO<sub>2</sub> in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for two hour in CDCl<sub>3</sub>



<sup>13</sup>C{<sup>1</sup>H} NMR spectrum of compound **1f**, styrene oxide **2a**, TBAI and CO<sub>2</sub> in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for two hour in CDCl<sub>3</sub>



DEPT-135 spectrum of compound **1f**, styrene oxide **2a**, TBAI and  $CO_2$  in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for two hour in CDCl<sub>3</sub>



g-HSQC spectrum of compound **1f**, styrene oxide **2a**, TBAI and  $CO_2$  in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for two hour in CDCl<sub>3</sub>



g-HSQC spectrum of compound **1f**, styrene oxide **2a**, TBAI and CO<sub>2</sub> in a molar ratio 1:4:2 (**1f**:**2a**:TBAI) at 70 °C for two hour in CDCl<sub>3</sub> (range 4.0–2.0 in <sup>1</sup>H-NMR and 70.0-20.0 ppm in <sup>13</sup>C-NMR.



**References:** 

- [1] C. Alonso-Moreno, F. Carrillo-Hermosilla, A. Garcés, A. Otero, I. López-Solera, A. M. Rodríguez and A. Antiñolo, *Organometallics*, 2010, **29**, 2789–2795.
- [2] D. Li, J. Guang, W.-X. Zhang, Y. Wanga and Z. Xi, Org. Biomol. Chem., 2010, 8, 1816–1820.
- [3] A. Antiñolo, F. Carrillo-Hermosilla, R. Fernández-Galán, J. Martínez-Ferrer, C. Alonso-Moreno, I. Bravo, S. Moreno-Blázquez, M. Salgado, E. Villaseñor and J. Albaladejo, *Dalton Trans.*, 2016, 45, 10717–10729.
- [4] Z. Li, M. Xue, H. Yao, H. Sun, Y. Zhang and Q. Shen, *J. Organomet. Chem.*, 2012, **713**, 27–34.
- [5] X. Zhang, C. Wang, C. Qian, F. Han, F. Xu and Q. Shen, *Tetrahedron*, 2011, 67, 8790–8799.
- [6] J. A. Castro-Osma, M. North and X. Wu, Chem. Eur. J., 2016, 22, 2100–2107.
- [7] J. Rintjema and A. W. Kleij, ChemSusChem, 2017, 10, 1274–1282.
- [8] D. O. Meléndez, A. Lara-Sánchez, J. Martínez, X. Wu, A. Otero, J. A. Castro-Osma,
  M. North and R. S. Rojas, *ChemCatChem*, 2018, 10, 2271–2277.
- [9] Y. R Yepes, C. Quintero, D. O. Meléndez, C. G. Daniliuc, J. Martínez and R. S. Rojas, *Organometallics*, 2019, **38**, 469–478.