Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Model	Voigt		
	y =		
Equation	nlf_voigt(x,y0,xc,A,wG,wL);		
Chi-Sqr	2.64E+11		
Adj. R- Square	0.99997		
		Value	Standard Error
	v0	-929267.966	112155.8913
	xc	5.96292	0.07828
	A	3.18E+08	1.89E+07
	wG	5.42979	0.06158
	wL	1.59018	0.06466
	FWHM	6.3301	0.06997
	v0	-929267.966	112155.8913
	xc	4.4	0
	A	1.22E+09	2.50E+07
	wG	2.10225	0.02338
	wL	2.81721	0.05024
	FWHM	3.98368	0.0213
	y0	-929267.966	112155.8913
	xc	1.7	0
	A	3.12E+06	235896.7997
	wG	0.14849	0.01731
	wL	0.10056	0.02514
	FWHM	0.20945	0.00435
	y0	-929267.966	112155.8913
	xc	1.4	0
	A	4.05E+08	4.44E+06
	wG	2.10648	0.01486
	wL	0.86276	0.025
	FWHM	2.60564	0.00424
	y0	-929267.966	112155.8913
	xc	1.13943	0.00487
	Α	6.24E+07	2.46E+06
	wG	1.56E-08	94.9527
	wL	1.4074	0.02738
	FWHM	1.40741	0.02738

Table S1. Multiple Voigt curve fitting parameters of the fit performed for ¹H MAS spectrumfor sample 2 nm Pt-NP @ γ -Al₂O₃ after ¹³CO adsorption showed in Fig 3.

Table S2. List of discussed samples, which were investigated by DNP.

$$W_1 = \frac{m_1}{m_1 + m_2} \cdot 100\%$$
 – weight % of bulk γ -Al₂O₃ in the sample,
 $W_2 = \frac{m_1 + m_2}{m_1 + m_2} \cdot 100\%$

 $W_2 = \frac{1}{m_1 + m_2 + m_3} + \frac{100\%}{m_1 + m_2 + m_3}$ - weight % of solid in the sample, where m_1 - weight of bulk γ -Al₂O₃, m_2 - weight of supported Pt-NPs, m_3 - weight of DNP matrix. ε (¹H) - proton signal enhancement, ε (¹C CP) - ¹H \rightarrow ¹³C CP signal enhancement, ε (¹³C) - ¹³C signal enhancement.

Sample	¹³ CO adsorption	<i>W</i> ₁	<i>W</i> ₂	ε(¹ Η)	ε (¹³ C CP)		ε (¹³ C)	
					ТСЕ	Carbonate	ТСЕ	Carbonate
					(78 ppm)	(167 ppm)	(78 ppm)	(167 ppm)
2 nm Pt-NP @ γ-Al ₂ O ₃	No	0	48	108 ± 1		not		
						observed		
	Yes	0	45	107 ± 1	104 ± 1	98 ± 5	12 ± 1	20 ± 4
1 nm Pt-NP	Yes	0	50	108 ± 1	106 ± 1	89 ± 1	11 ± 1	15 ± 3
@ γ -Al ₂ O ₃								
2 nm Pt-NP	Vac	0	37	169 ± 1	167 ± 4	not		
@ TiO ₂	Yes					observed		
2 nm Pt-NP	No	63	41	164 ± 1	157 ± 2	*		
@ TiO ₂								
$+\gamma$ -Al ₂ O ₃	Yes	62	48	104 ± 1	101 ± 2	192 ± 64		
2 nm Pt-NP	Yes	0	30	106 ± 1		not		
@ SiO ₂						observed		
2 nm Pt-NP								
@ SiO ₂	Yes	66	41	130 ± 1	132 ± 3	114 ± 14		
$+\gamma$ -Al ₂ O ₃								
2 nm Pt-NP	Yes	0 3	20	39 120 ± 1		not	11 ± 1	not
@ fumed silica			39			observed		observed
2 nm Pt-NP								
@ fumed silica	Yes	71	40	140 ± 1	127 ± 2	127 ± 12		
$+\gamma$ -Al ₂ O ₃								
γ-Al ₂ O ₃	No	100	51	159 ± 2	154 ± 5	*		
	Yes	100	51	134 ± 1	128 ± 3	*		
γ-Al ₂ O ₃	¹³ CO ₂ **	100	44	150 ± 1	149 ± 3	155 ± 7		

* – the enhancement factor was impossible to estimate due to too low signal to noise level in spectra without μw irradiation.

** – ${}^{13}CO_2$ gas was used instead of ${}^{13}CO$ gas.

Fig S4. ¹³C MAS spectra obtained for γ -Al₂O₃ sample: a) before ¹³CO₂ adsorption, b) after ¹³CO₂ adsorption. ¹H \rightarrow ¹³C CP MAS spectra obtained for γ -Al₂O₃ sample: c) before ¹³CO₂ adsorption, d) after ¹³CO₂ adsorption. ¹H \rightarrow ¹³C CP MAS spectra obtained for the γ -Al₂O₃ sample after ¹³CO₂ adsorption: e) without and f) with μ w irradiation. Note: Samples for measurements of spectra e) and f) were prepared by impregnation with 15 mM TEKPol in 1,1,2,2-tetrachloroethane (TCE). Spectrum e) is enlarged by a factor of 20 to make signals visible. Spinning sidebands are indicated by asterisks.

Fig S5. DNP enhanced ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ CP MAS spectra obtained for a) 2nm Pt-NP @ SiO₂ sample after ${}^{13}\text{CO}$ adsorption, b) 2nm Pt-NP @ SiO₂ + γ -Al₂O₃ sample after ${}^{13}\text{CO}$ adsorption, c) 2nm Pt-NP @ fumed silica sample after ${}^{13}\text{CO}$ adsorption, d) 2nm Pt-NP @ fumed silica + γ -Al₂O₃ sample after ${}^{13}\text{CO}$ adsorption. Note: Samples for measurements were prepared by impregnation with 15 mM TEKPol in 1,1,2,2-tetrachloroethane (TCE). Spinning sidebands are indicated by asterisks. Signals at around 30 ppm arise due to impurities.

assignment is indicated in the figures.