Supporting Information

Dual Tuning of Nickel Sulfide Nanoflake Array Electrocatalyst through Nitrogen

Doping and Carbon Coating for Efficient and Stable Water Splitting

Qiuyan Hao, a Shiyun Li, Hui Liu, A Jing Mao, c,d Ying Li, Caichi Liu, Jun Zhang, *a,b

Chengchun Tang^{a,b}

^a School of Material Science and Engineering, Hebei University of Technology,

Dingzigu Road 1, Tianjin 300130, P. R. China.

^b Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Guangrongdao Road 29, Tianjin 300130, P. R. China.

^c School of Materials Science and Engineering, Tianjin University, Tianjin Haihe Education Park, Tianjin 300072, PR China

^d Center for functional materials, Brookhaven National Laboratory, City of New York 11973, USA

E-mail address: liuhuihebut@163.com (H. Liu). junnano@gmail.com (J. Zhang)

Figure S1. The EDS of N-Ni₃S₂@C/NF

Figure S2. Survey XPS spectra of N-Ni₃S₂@C/NF

Figure S3. The XPS spectra of Ni 2p for Ni_3S_2/NF and $N-Ni_3S_2/NF$

Figure S4. The XRD pattern of Ni_3S_2/NF and $N-Ni_3S_2/NF$

Figure S5. The SEM imagine of Ni_3S_2/NF with different magnifications

Figure S6. The SEM imagine of N-Ni₃S₂/NF with different magnifications

Figure S7. a)The EDS of Ni₃S₂/NF and b) N-Ni₃S₂/NF

Figure S8. a)Typical cyclic voltammetry curves of N-Ni₃S₂@C/NF, b) N-Ni₃S₂ /NF

and c)Ni $_3S_2$ /NF in 1M KOH with different scan rates

Figure S9. a) The ESCA of N-Ni $_3S_2$ @C/NF, N-Ni $_3S_2$ /NF , Ni $_3S_2$ /NF and

NF.b)Polarization curves from normalized to the electrochemical active surface area

N-Ni₃S₂/NF • Ni N-Ni3S2@C/NF A Ni3S2 Intensity (a.u.) (JCPDS Card 44-1418) (JCPDS Card 040850) 10 20 30 40 50 60 70 80 2θ (degree)

(ECSA) for HER.

Figure S10. The XRD of N-Ni₃S₂/NF and N-Ni₃S₂@C/NF after HER

Figure S11. SEM images of a-b)N-Ni₃S₂/NF and c-d) N-Ni₃S₂@C/NF before and

after HER in 1 M KOH

Figure S12. Electrochemical impedance spectroscopy (EIS) Nyquist plots at 1.53 V

vs.RHE for all the synthesized materials.

Figure S13. The XRD of N-Ni₃S₂@C/NF after OER

Figure S14. a-b)The SEM imagine of N-Ni₃S₂@C/NF after OER in 1 M KOH with

different magnifications

Figure S15. The EDS of N-Ni₃S₂@C/NF after OER

Figure S16. The XPS spectra of a) Ni 2p, b) S 2p, c) O 1s and d) C 1s for N-

Ni₃S₂@C/NF after OER

Figure S17. SEM images of N-Ni₃S₂@C/NF after overall water splitting. a) cathode b) anode and EDS results of N-Ni₃S₂@C/NF after overall water splitting. c) cathode

d) anode

Figure S18. The amount of gas theoretically calculated and experimentally measured

versus time for overall water splitting.

Figure S19. The XRD of a) N-Co₄S₃@C/CF and b) N-(Ni,Fe)S₂@C/NFF

Figure S20. a) The SEM image and b) EDS of N-Co₄S₃@C/CF

Figure S21. a) The SEM image and b) EDS of N-(Ni,Fe)S₂@C/NFF

Figure S22. a) *iR*-corrected linear sweep voltammetry curves of N-(Ni,Fe)S₂@C/NFF

for HER and b)OER in 1 M KOH.c) iR-corrected linear sweep voltammetry curves of

N-Co₄S₃@C/CF for HER and d)OER in1 M KOH.

Figure S23. a) The i-t curves of N-Co₄S₃@C, b) N-(Ni,Fe)S₂@C

for HER and OER in 1 M KOH .

Catalyst	Electrolyte	J (mA cm ⁻²)	η (mV)	Tafel (mV dec ⁻¹)	Ref.
N-Ni ₃ S ₂ @C/NF	1 M KOH	10	113	<u>90</u>	This work
N-Ni ₃ S ₂ /NF	1 M KOH	10	110	-	1
Ni_3S_2 nanorod	1 M KOH	10	200	107	2
Ni_3S_2 nanosheet	1 M KOH	10	223	-	3
NiS microsphere	1 M KOH	20	158	83	4
Fe ₂ Ni ₂ N	1 M KOH	10	110	-	5
NiCo ₂ S ₄ nanowire	1 M KOH	10	210	59	6
Ni_3S_2 needle array	1 M KOH	10	117	130	7
NiFe/NiCo ₂ O ₄ /NF	1 M KOH	10	105	88	8
NiFe@NC	1 M KOH	10	200	-	9
CoP	1 M KOH	10	209	51	10
Co ₃ Se ₄ /CF	1 M KOH	10	179	-	11

Table S1 Comparison of HER performance of N-Ni $_3S_2@C/NF$ product with variouswell-developed electrocatalysts in the literature.

Table S2 Comparison of OER performance of N-Ni₃S₂@C/NF product with various well developed electropatalysts in the literature

well-developed electrocatalysts in the literature

Catalyst	Electrolyte	J (mA cm ⁻²)	η (mV)	Tafel (mV dec ⁻¹)	Ref.
N-Ni ₃ S ₂ @C/NF	1M KOH	100	310	75	This work
N-Ni ₃ S ₂ /NF	1M KOH	170	350	70	1
Ni_3S_2 nanorod	1M KOH	100	370	140	12
Ni_3S_2 nanosheet	1M KOH	100	350	-	3
NiS microsphere	1M KOH	50	335	120	4
NiFe-LDH	1M KOH	100	300	47	13
NiCoFe LDH	1M KOH	30	233	53	14
NiCo LDH	1M KOH	100	340	57	15
FeCoW	1M KOH	10	191	-	16

Catalyst	Electrolyte	J	Overall	Durability	Ref.
		(mA cm ⁻²)	voltage (V)	(h)	
N-Ni ₃ S ₂ @C/NF	1 M KOH	10	1.57	140	This work
N-Ni ₃ S ₂ /NF	1 M KOH	10	1.48	8	1
NiS microsphere	1 M KOH	10	1.64	35	4
NiSe nanowire	1 M KOH	10	1.63	20	17
Fe ₂ Ni ₂ N nanoarrays	1 M KOH	10	1.65	10	5
Ni@Co-Ni-P	1 M KOH	100	1.61	528	18
NiCo ₂ S ₄ nanowire	1 M KOH	10	1.63	50	6
MoS_2/Ni_3S_2					
Heterostructures	1 M KOH	10	1.56	10	19
CoS-Co(OH) ₂	1 M KOH	10	1.58	28	20
Ni/Ni ₈ P ₃	1 M KOH	10	1.61	10	21
NiCoP	1 M KOH	10	1.58	12	22

Table S3 Comparison of water splitting cell voltage of N-Ni₃S₂@C/NF product with various well-developed electrocatalysts in the literature

References

- 1. P. Chen, T. Zhou, M. Zhang, T. Yun, C. Zhong, Z. Nan, L. Zhang, C. Wu and X. Yi, *Adv. Mater.*, 2017, 29,1701584.
- 2. W. Zhou, X. J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang and H. Zhang, *Energy Environ. Sci.*, 2013, **6**, 2921-2924.
- 3. L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *J. Am. Chem. Soc.*, 2015, **137**, 14023-14026.
- 4. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chem. Commun.*, 2015, **52**, 1486-1489.
- 5. M. Jiang, Y. Li, Z. Lu, X. Sun and X. Duan, *Inorg. Chem. Front.*, 2016, **3**, 630-634.
- 6. A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4660-4660.
- 7. S. Engmann, H. W. Ro, A. Herzing, C. R. Snyder, L. J. Richter, P. B. Geraghty and D. J. Jones, *J. Mater. Chem. A*, 2016, **4**, 15511-15521.
- 8. C. Xiao, Y. Li, X. Lu and C. Zhao, *Adv. Funct. Mater.*, 2016, **26**, 3515-3523.

- 9. Z. Zhang, Y. Qin, M. Dou, J. Ji and F. Wang, *Nano Energy*, 2016, **30**, 426-433.
- J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 11. W. Li, X. Gao, D. Xiong, F. Wei, W. G. Song, J. Xu and L. Liu, *Adv. Energy Mater.*, 2017, **7**, 1602579.
- 12. C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou and S. Wang, *Electrochim. Acta*, 2015, **174**, 297-301.
- 13. M. Lee, H. S. Oh, K. C. Min, J. P. Ahn, J. H. Yun and B. K. Min, *Appl. Catal. B Environ.*, 2018, **233**,130-135.
- 14. Q. Yang, T. Li, Z. Lu, X. Sun and J. Liu, *Nanoscale*, 2014, 6, 11789-11794.
- 15. J. Jiang, A. Zhang, L. Li and L. Ai, J. Power Sources, 2015, 278, 445-451.
- 16. Z. Bo, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, L. Min and L. Zheng, *Science*, 2016, **352**, 333-337.
- 17. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angew Chem. Int. Ed .Engl*, 2015, **54**, 9351-9355.
- 18. J. Zhang, H. Liu, P. Shi, Y. Li, L. Huang, W. Mai, S. Tan and X. Cai, *J. Power Sources*, 2014, **267**, 356-365.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, *Angew. Chem.*, 2016, **55**, 6702-6707.
- 20. T. Yoon and K. S. Kim, Advanced Functional Materials, 2016, 26, 7370-7370.
- 21. G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey and S. Z. Qiao, *Adv.Funct.Mater.*, 2016, **26**, 3314-3323.
- 22. H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlä¶Gl and H. N. Alshareef, *Nano Lett.*, 2016, **16**, 7718-7725.