Supporting Information

Conversion of CO₂ on a Highly Active and Stable Cu/FeOx/CeO₂ Catalyst: Tuning Catalytic Performance by Oxide-Oxide Interactions

Lili Lin^a, Siyu Yao^a, Ning Rui^a, Lili Han^b, Feng Zhang^c, Clifford Gerlak^a, Zongyuan Liu^a, Jiajie Cen^c, Liang Song^c, Sanjaya Senanayake^a, Huolin L. Xin^b, Jingguang G. Chen^a, José A. Rodriguez^{*acd}

^a Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States

^b Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.

^c Materials Science and Chemical Engineering Department, State University of New York at Stony Brook, New York, 11794, United States

^d Department of Chemistry, State University of New York at Stony Brook, New York 11794, United States

Supplementary Tables and Figures

Sample	Cu loading	Fe loading	BET surface area (m ² /g)
CeO ₂			40
5Cu/CeO ₂	5.26+/-0.01		39
5Cu0.8Fe/CeO ₂	4.91+/-0.04	0.76+/-0.01	40
5Cu1.6Fe/CeO ₂	5.43+/-0.03	1.59+/-0.01	42
5Cu3.2Fe/CeO ₂	5.01+/-0.02	3.00+/-0.01	40
5Cu5Fe/CeO ₂	4.93+/-0.01	4.23+/-0.01	38
1.6Fe/CeO ₂		1.57+/-0.01	41

Table S1. The physicochemical properties of 5CuxFe/CeO₂ catalysts

Table S2. The affiliation of the major diffraction peaks and related crystal phase of Fe and Cu species^a.

Species	Diffraction peaks ^e (related crystal phase)		
Fe	6.82 (110)	9.65 (200)	
FeO	5.56 (110)	6.41 (11-1)	
Fe ₃ O ₄	4.66 (220)	5.46 (311)	
Fe ₂ O ₃	5.12 (104)	5.49 (2-10)	
CuFe ₂ O ₄	5.72 (202)	6.74 (220)	
Cu	6.59 (111)	7.65 (200)	
CuO	5.47 (002)	5.97 (111)	

a. the incident X-ray wavelength was 0.24121 Å.

When the temperature increases during XRD data collection, the lattice thermal expansion will happen and cause the shift of the diffraction peaks shifting to lower 20. The peak centered at 5.49° was used to determine the diffraction of Fe₂O₃, as the strongest line was overlapped by the one of the peaks of CeO₂. So the peak centered at 5.44° appeared at 180 °C was attributed the diffraction of Fe₂O₃ species.

Figure S1. AP-XPS characterization of Ce 3*d* profiles of 5Cu1.6Fe/CeO₂ catalyst under varied conditions.

Figure S2. The EXAFS fitting results in R space of the **(A)** 5Cu/CeO₂; **(B)** 5Cu1.6Fe/CeO₂ in Cu K edge and **(C)** 5Cu1.6Fe/CeO₂ in Fe K edge. The black line and dot are the R magnitude spectra while the red ones are the R real spectra.

Edge	Sample	Shell	Bond length (Å)	Coordination	σ²	E ₀ shift
Cu K	5Cu/CeO ₂	Cu-Cu	2.52±0.01	9.0+/-0.9	0.011	0.8
	5Cu1.6Fe/CeO2- RED	Cu-Cu	2.50±0.01	5.3+/-0.4	0.015	0.1
	5Cu1.6Fe/CeO ₂ - RXN	Cu-Cu	2.50±0.03	5.3+/-0.8	0.015	-0.4
Fe K edge		Fe-O	1.96±0.03	2.2+/-0.5	0.008	
		Fe-O	2.16±0.04	2.2+/-0.6	0.008	
	5Cu1.6Fe/CeO₂- RXN	Fe-Fe(Cu)	2.52±0.02	1.6+/-0.2	0.009	2 2
		Fe-(O)-Fe	3.13±0.02	1.2+/-0.3	0.009	5.2
		Fe-(O)-Fe	3.66±0.02	0.4+/-0.1	0.009	
		Fe-Ce	3.83±0.04	0.3+/-0.2	0.005	

Table S3. The EXAFS fitting results of Cu K edge and Fe K edge of Cu5Fe1.6/CeO $_2$ catalyst.

Table S4. The linear combination of Fe_2O_3 , Fe_3O_4 , FeO and Fe species in the $5Cu1.6Fe/CeO_2$ catalyst under reaction condition

Catalyst	Fe ₂ O ₃	Fe ₃ O ₄	FeO	Fe
5Cu1.6Fe/CeO ₂ -rxn	31.4+/-3.5	24.2+/-3.9	45.6+/-0.7	0

The necessary of including the Fe-Ce shell in the fitting of 5Cu1.6Fe/CeO₂ catalysts

As shown in the Figure S3, it could be seen that if the Fe-Ce shell is not included in the fitting of the Fe K edge spectrum, the quality of the fitting in the range of 3-4 Å will get worse. In the meantime, the fitting parameters of

the longest Fe-Fe shell became meaningless when there is no Fe-Ce path in the fitting, such as the negative σ^2 value. This phenomenon suggests that the Fe-Ce and Fe-Fe shells are correlating shells that should both be included in the fitting processes.

Table S5. The Fe-Fe parameter comparison of the fitting with Fe-Ce and without Fe-Ce path

 σ^2 Bond length Amplitude E0 shift Without Fe-Ce 3.67 0.07 -0.002 4.0 With Fe-Ce 3.66 0.10 0.003 3.2

Figure S4. The crystal phase evolution of (A) 5Cu1.6Fe/CeO₂ in the reaction atmosphere (CO₂:H₂=1:1) from room temperature, **(B)** the enlarged figure of Figure A in dash square from 5.1 to 6.9°.