Supplementary material

In situ DRIFT spectroscopy insights into the reaction mechanism of

CO and toluene co-oxidation over Pt-based catalysts

Qi Zhang^{a,1}, Shengpeng Mo^{a,1}, Jiaqi Li^a, Yuhai Sun^a, Mingyuan Zhang^a,

Peirong Chen^a, Mingli Fu^{a,b,c}, Junliang Wu^{a,b,c}, Limin Chen^{a,b,c} and Daiqi

Ye^{a,b,c} *

^a School of Environment and Energy, South China University of Technology, Guangzhou 510006,

PR China

E-mail address: cedqye@scut.edu.cn (D. Ye);

^b National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China

^c Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control

(SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China

¹ Qi Zhang and Shengpeng Mo are co-first authors.

Experimental section

Catalyst characterizations

Characterization of the phase structure of each catalyst sample by the X-ray diffraction (XRD) patterns, and was recorded on a Panalytical X'Pert PRO system (Cu K_{α}: 1.5406A; 40KV; 40Ma), the range of 20 angles of the scan is 5 to 90°.

The Brunauer-Emmett-Teller (BET) surface areas of the catalysts were acquired from N_2 adsorption-desorption at -196 °C using the Micromeritics ASAP 2020 M. The catalyst samples were desorbed at 150 °C under vacuum for 4h before the analysis.

The Pt-based catalysts were determined by an inductively coupled plasma optical emission spectrometer (ICP-OES, iCAP 6300).

Transmission electron microscopy (TEM) images were obtained using JEOL JEM-2010F at an accelerating voltage of 200 kV.

The X-ray photoelectron spectroscopy (XPS) measurements were performed on a multifunctional imaging electron spectrometer (VG, XLESCALAB 250Xi) equipped with monochromatic Al K α (hv = 1486.6 eV) radiation. The binding energy was calibrated using the adventitious carbon (C 1s) at 284.6 eV.

Hydrogen temperature programmed reduction (H_2 -TPR) were carried out using a Micromeritics Autochem 2920 with a TPx system and a thermal conductivity detector (TCD).

All of the operando diffuse reflectance infrared FT spectroscopy (DRIFTS) results were collected on an FTIR spectrometer (Nicolet IS50R FT-IR) equipped with a Harrick DRIFT cell and an MCT/A detector in the range of 650–8000 cm⁻¹ with 32 scans at a resolution of 4 cm⁻¹ using a KBr window. In a typical experiment, the powder samples were pre-treated in pure N_2

(100 mL min⁻¹) at 300 °C for 1 h to remove the residuals. After cooled down to 50 °C, and a background spectrum was collected at 4 cm⁻¹ resolution for 32 scans in N₂ atmosphere. Then, the reactant gas (1.0 vol.% CO or 500 ppm toluene) was continuously introduced into the in situ reaction chamber. The DRIFTS spectra (4000–650 cm⁻¹) were collected and continuously recorded for 1h to realize the adsorption equilibrium.

Catalytic oxidation of CO/toluene

The catalytic activity was carried out in a fixed-bed quartz tubular micro-reactor ($\Phi = 10.0$ mm) with 100 mg catalyst and 400 mg quartz sands (40–60 mesh). The volumetric composition of the reactant mixture was 1.0 vol.% CO/1000 ppm toluene containing synthetic air (20% O₂ + balance N₂), and the total continuous flow was 100 mL min⁻¹, corresponding to a weight hourly space velocity (WHSV) of 60,000 mL g⁻¹ h⁻¹. The range of temperature was 100 to 250 °C. The concentrations of the reactants and products were monitored online by gas chromatography (Shimadzu GC-2014) equipped with two flame ionization detector (FID). To study the effect of water vapor on the catalytic activity, the on-stream CO/toluene oxidation experiment was carried out in the presence and absence of different water vapor (1.0 vol.%, 5.0 vol.% and 10 vol.%) obtained by bubbling. The CO and toluene conversions (η_{CO} , %, $\eta_{toluene}$, %) were calculated according to the following equation:

$$\eta_{co}(\%) = \frac{(C_{in} - C_{out})}{C_{in}} \times 100\%$$
(1)

$$\eta_{toluene}(\%) = \frac{(C_{in} - C_{out})}{C_{in}} \times 100\%$$
 (2)

Where C_{in} and C_{out} are the CO or toluene concentration in the feed gas and in the product, respectively.

Catalytic activity can also be evaluated by comparing the apparent activation energy (E_a) values of catalysts, a sample with a lower E_a value in a catalytic reaction will possess excellent catalytic activity. It has been reported that CO/VOCs combustion follows first-order kinetics at CO/VOCs concentration less than 20% under presence of excess oxygen with the equations:

$$\gamma_{\text{toluene}} = \frac{N_{\text{toluene}} \times \eta_{\text{toluene}}}{W_{cat}}$$
(3)

$$\gamma_{toluene} = -\kappa c = \left[-A \exp\left(-\frac{E_a}{RT}\right) \right] c \tag{4}$$

Where $N_{toluene}$, W_{cat} , γ , κ , A, and E_a correspond to the $C_{toluene}$ gas flow rate (mol s⁻¹), catalyst weight (g), reaction rate (µmol g⁻¹ s⁻¹)), rate constant (s⁻¹), pre-exponential factor, and apparent activation energy (kJ mol⁻¹), respectively. The κ values are calculated from the reaction rates and toluene conversions. E_a value in the catalytic CO reaction is calculated by the same equations.

Fig. S1 XRD patterns of Pt-Al₂O₃, Pt-Co₃O₄ and Pt-CeO₂ samples.

Fig. S2 N₂ adsorption-desorption isotherms of Pt-Al₂O₃, Pt-Co₃O₄ and Pt-CeO₂ samples.

Fig. S3 H₂-TPR profiles of these as-synthesized CeO₂ and Co₃O₄ samples.

Fig. S4 C 1s XPS spectra of these as-synthesized Pt-based samples.

Fig. S5 CO and toluene conversions in simple and mixture conditions of (a) CeO_2 nanorod and (b) Co_3O_4 nanosheet. Simple conditions: 1.0 vol.% CO or 1000 ppm toluene balanced with air; Mixture conditions: 1.0 vol.% CO and 1000 ppm toluene balanced with air. All the reactions were kept at WHSV=60, 000 mL g⁻¹ h⁻¹.

Fig. S6 Arrhenius plots for (a) CO and (b) toluene oxidation over different Pt-based samples.

Fig. S7 (a) CO and (b) toluene conversions of fresh $Pt-Al_2O_3$ and fresh $Pt-Al_2O_3$ after reduction at different conditions. Simple conditions: 1.0 vol.% CO or 1000 ppm toluene balanced with air; Mixture conditions: 1.0 vol.% CO and 1000 ppm toluene balanced with air. All the reactions were kept at WHSV=60, 000 mL g⁻¹ h⁻¹.

Fig. S8 CO conversion of Pt-CeO₂ catalysts in the absence of O_2 reaction condition: 1.0 vol.% CO and 5 vol.% H₂O balanced with N₂.

Fig. S9 (a, c) CO and (b, d) toluene conversions of Pt-CeO₂ catalysts at different CO/toluene concentration. All the reactions were kept at WHSV=60, 000 mL $g^{-1} h^{-1}$.

Sample	Temperature	Simple conditions			Mixture conditions		
	(°C)	T ₁₀ /°C	T ₅₀ /°C	T ₉₉ /°C	$T_{10}/^{\circ}C$	T ₅₀ /°C	T ₉₉ /°C
Co ₃ O ₄	СО	115	136	160	235	245	250
	Toluene	245	265	270	236	245	250
CeO ₂	СО	200	225	240	224	245	260
	Toluene	180	210	250	190	230	270
Pt-Al ₂ O ₃	СО	141	145	150	141	170	210
	Toluene	133	162	190	150	187	220
Pt-Co ₃ O ₄	СО	140	145	150	160	192	210
	Toluene	153	176	190	170	198	210
Pt-CeO ₂	СО	101	111	125	140	174	190
	Toluene	148	164	180	170	180	195

Table S1. Catalytic activities of the Co_3O_4 , CeO_2 , $Pt-Al_2O_3$, $Pt-Co_3O_4$ and $Pt-CeO_2$ samples.