Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Photocatalytic hydrogen-evolution of 1-tetralones to

α -naphthols by continuous-flow technology

Xu He,^{ab} Yi-Wen Zheng,^a Tao Lei,^a Wen-Qiang Liu,^{ab} Bin Chen,^{*ab} Ke Feng,^{ab} Chen-Ho Tung^{ab} and Li-Zhu Wu^{*ab}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

E-mail: chenbin@mail.ipc.ac.cn; lzwu@mail.ipc.ac.cn

Contents

1. General information	2
2. Experimental procedures	3
3. Mechanism studies	8
4. Substrate synthesis	14
5. Characterization of products (2a – 2u)	18
6. Reference	24
7. NMR spectra for substrates	25
8. NMR spectra for products	29

1. General information

All reagents and solvents were commercial available unless individually noted. Co(dmgH)₂PyCl (III) was purchased from Acros. Quinolinium photocatalysts¹ and other cobaloxime catalysts² were prepared as previously reported. 500 W medium pressure Hanovia mercury lamp with a glass water cooling jacket (λ > 300 nm) was used as light source (please pay attention to the eye protection). The products were isolated by silica column chromatograph (200-300 meshes silica gel). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded using a Bruker Advance DPX instrument (400, 101 and 377 MHz, respectively) with tetramethylsilane (TMS) as an internal standard. Data for ¹H NMR are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet, br = broad), coupling constant J (Hz) and integration. Data for ¹³C NMR and ¹⁹F NMR was reported in terms of chemical shift relative to different deuterium reagents. Mass spectra were recorded using a Trio-2000 GC-MS spectrometer. The generated photoproduct of H₂ was characterized and measured by GC analysis (14B Shimadzu) using argon as the carrier gas with a molecular sieve column (5 Å; 30 m × 0.53 mm) and a thermal conductivity detector (TCD). Methane was used as internal standard for the measurement of the yield of H_2 . GC analysis was performed using N_2 as the carrier gas with capillary column (30 m \times 0.25 mm \times 0.33 μ m) and a flame ionization detector (FID) using n-tetradecane as internal standard. Conversions and yields that were determined by ¹H NMR were obtained from the crude reaction mixture by using *n*-tetradecane as an internal standard. Yields of products were based on the consumed substrates. UV-Vis absorption and luminescent quenching was performed on U-3900, F-4600 and LP-920. Cyclic voltammetry was performed on a CHI660E.

2. Experimental procedures

2.1 The lab-scale experiment conditions

QuCN⁺ (1×10⁻² mmol, 2.69 mg) and Co(dmgBF₂)₂(CH₃CN)₂ (II) (6×10⁻³ mmol. 2.8 mg) were dissolved in different solvents and the reaction tube was sealed. After degassing by the argon, 1-tetralone (0.2 mmol, 27 µL) and BF₃·Et₂O (4×10⁻² mmol, 5 µL) were added. Methane (1mL) was then injected as the internal standard for analysis of generated H₂, and the pinholes were sealed by paraffin. The reaction mixture was irradiation at room temperature using a 500 W medium pressure Hanovia mercury lamp with a glass water cooling jacket (λ > 300 nm). After 5 h irradiation, yield of H₂ was detected by GC-TCD. The conversion of 1-tetralone and yield of 1-naphathol (based on consumed 1-tetralone) were obtained from the crude reaction mixture by GC-FID using *n*-tetradecane as an internal standard.

	QuCN⁺(5 mol%),	II (3 mol%)		
	λ > 300 nm, rt, 5 h			
1a			2a	
entry	solvent (5 mL)	conv. 1a (%)	Yield 2a (%) ^a	
1	DCE	54	70	
2	DCM	43	46	
3	EtOH	n.d.	_	
4	Acetone	66	49	
5	DMF	n.d.	_	
6	DMSO	n.d.	_	
7	H ₂ O	n.d.	_	
8	CH ₃ CN	63	70	

Table S1. Optimization of solvents for the reaction condition

^a Yields of **2a** were based on the consumed **1a**.

Photocatalysts (1×10^{-2} mmol) and cobaloxime complexes (6×10^{-3} mmol. 2.8 mg) were dissolved in CH₃CN and the reaction tube was sealed. After degassing by the argon, 1-tetralone (**1a**, 0.2 mmol, 27 µL) was added. Methane (1mL) was then injected as the internal standard for analysis of generated H₂, and the pinholes were sealed by paraffin. The reaction mixture was irradiation at room temperature using a 500 W medium pressure Hanovia mercury lamp with a glass water cooling jacket ($\lambda > 300$ nm). After 5 h irradiation, yield of H₂ was detected by GC-TCD. The conversion of **1a** and yield of 1-naphathol **2a** (based on consumed **1a**) were obtained from the crude reaction mixture by GC-FID using *n*-tetradecane as an internal standard.

Table S2. Optimization of the reaction condition

$$\begin{array}{c} \begin{array}{c} & & \text{PC (5 mol\%)} \\ \hline & & \text{Co catalyst (3 mol\%)} \\ \hline \lambda > 300 \text{ nm, CH}_3\text{CN (5 mL)} \\ \hline & & \text{Ar, rt, 5 h} \end{array} \xrightarrow{\text{OH}} + H_2 \end{array}$$

entry	PC	Со	Additives	Conv. 1a (%)	Yield 2a . (%) ^a	Yield H ₂ (%)
1	QuH⁺	I	—	48	48	31
2	QuH⁺	II	—	40	52	25
3	QuH⁺	III	—	45	62	30
4	QuH⁺	IV	_	25	60	22
5	QuCN⁺	I	_	30	53	20
6	QuCN ⁺	П	—	63	70	50
7	QuCN⁺	П	$BF_3 \cdot Et_2O^b$	78	77	70
8 ^c	QuCN ⁺	П	$BF_3 \cdot Et_2O^b$	73	76	65
9 ^d	QuCN⁺	Ш	$BF_3 \cdot Et_2O^b$	36	53	0
10 ^d	QuCN⁺	_	$BF_3 \cdot Et_2O^b$	19	34	0

^a Yields of **2a** were based on the consumed **1a**. ^b 20 mol% $BF_3 \cdot Et_2O$ was added.^c Under N_2 atmosphere. ^d Under 1 atm O_2 .

2.2 The attempt to hydroxylation of naphthalene with H₂O

The reaction was carried out according the previous report.^{1b} After 10 hour's irradiation, H_2 was detected by GC-TCD. The conversion of naphthalene and yield of 1-naphathol and 2-naphthanol were detected from the crude reaction mixture by GC-FID using *n*-tetradecane as an internal standard.

2.3 The continuous-flow reactor

The self-built continuous-flow reactor: a PTFE tube (ID = 612 μ m, L= 9 m, V_R = 2.65 mL) is coiled around a glass cooling jacket, and a 500 W medium pressure mercury lamp is put into the jacket. The jacket system is immersed in a cooling water bath. The two ends of the tube are respectively connected with a peristaltic pump to push the solution through the PTFE tube and a conical flask for receiving the reaction mixture (**Fig. S1**).

Fig. S1. The continuous-flow reactor

2.4 General Procedure for Continuous-Flow Experiments

1-tetralones (0.2 mmol, liquid 1-tetralone derivatives were added after degassing), QuCN⁺ (1×10⁻² mmol, 2.69 mg) and Co(dmgBF₂)₂(CH₃CN)₂ (II) (6×10⁻³ mmol, 2.8 mg,) were dissolved in CH₃CN (5 mL) and the reaction tube was sealed. After degassing by argon, a 10 mL syringe was used to extract the liquid from the reaction and connected to PTEF tube (ID = 612 µm, L= 9 m, V_R = 2.65 mL) of continuous flow reactor. The solution was irradiation at room temperature using a 500 W high pressure Hanovia mercury lamp with a glass water cooling jacket (λ > 300 nm). The conversion and yields were determined by ¹H NMR using *n*-tetradecane as an internal standard. All the reactions were performed at least twice. The reaction mixture of parallel reactions were combined and isolated by flash column chromatography on silica gel using a mixture of petroleum ether-EtOAc as eluent. The isolated yields were the average yields of parallel reactions.

O 1a	QuCN ⁺ (5 Γ λ > 300 n continuot	i mol%), II (3 mol%) BF ₃ •Et ₂ O m,CH ₃ CN (5 mL) Ar, rt us-flow conditions		$+ H_2$
entry	reaction time	$BF_3 \cdot Et_2O$	Conv. 1a (%)	Yield 2a (%) ^a
1	30 min	10 mol%	60	97
2	1 h	10 mol%	78	77
3	30 min	20 mol%	66	100
4	1 h	20 mol%	83	48

Table S3. Optimization of the continuous-flow reaction condition

^a Yields of **2a** were based on the consumed **1a**.

2.5 The scaled-up experiment in continuous-flow conditions

QuCN⁺ (5×10⁻² mmol, 13.4 mg), Co(dmgBF₂)₂(CH₃CN)₂ (II) (3×10⁻² mmol, 14 mg) and **1n** (1 mmol, 158.2 mg,) were dissolved in CH₃CN (25 mL) and the reactions tube was sealed. After degassing by the argon, BF₃·Et₂O (0.2 mmol, 25 μ L) was added. After that, the reaction mixture was pumped into a 50 mL syringe under argon atmosphere; the syringe was then attached to the peristaltic pump. Continuous flow reactor: PTEF tube (ID = 612 μ m, L = 9 m, V_R = 2.65 mL), continuous flowrate was set as 2.65 mL/h and the reaction time was determined to be 1 hour. 500 W medium pressure Hanovia mercury lamp with a glass water cooling jacket (λ > 300 nm) was used as light source. After irradiation for a while, The conversion of 4-methyl-3,4-dihydronaphthalen-1(2*H*)-one and yield of 4-methylnaphthalen-1-ol were determined by ¹H NMR from the crude reaction mixture by using *n*-tetradecane as an internal standard. The isolated yield of **1n** and the yield of **2n** (based on consumed **1n**) were given under the product **2n**.

2.6 Preparation of D₂-1a

D₂-1a was synthesized according the previous report.⁴ The **D₂-1a** was obtained in 85% yield with 98% D incorporation at C-2 according to spectroscopic analysis. ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.38 – 7.20 (m, 2H), 2.97 (t, *J* = 6.0 Hz, 2H), 2.63 (s, 0.04H), 2.13 (t, *J* = 5.9 Hz, 2H) (**Fig. S2**).

Fig. S2. ¹H NMR of a mixture of D₂-1a and 1a

2.7 Photocatalysts and cobaloxime complexes:

Fig. S3. Photocatalysts and cobaloxime catalysts

3. Mechanism studies

3.1 Cyclic voltammetry (CV) experiments:

A CH₃CN solution (3×10^{-4} M) of **1a** and a CH₃CN solution (3×10^{-4} M) of 1-tetralone **1a** with BF₃•Et₂O (3×10^{-4} M) was prepared with NBu₄PF₆ (0.1 M) as the supporting electrolyte respectively. The cyclic voltammogram was obtained using a glassy carbon as working electrode, a Pt strip as counter electrode, and a saturated calomel electrode as reference electrode. Scan rate = 0.1 V/s, range from 0 V to 3.0 V.

Fig. S4. Cyclic voltammetry spectra of 1a shows an oxidative potential at 2.51 V vs. SCE in anhydrous CH₃CN.

Fig. S5. Cyclic voltammetry spectra of **1a** with $BF_3 \bullet Et_2O$ shows an oxidative potential at 2.44 V vs. SCE in anhydrous CH_3CN .

3.2 Spectroscopy experiments

Fig. S6. Fluorescence quenching spectra of $QuCN^+$ (2×10⁻⁵ M) with different concentrations of **1a** in degassed CH₃CN with excitation at 340 nm.

Fig. S7. Fluorescence quenching spectra of $QuCN^+$ (2×10⁻⁵ M) with different concentrations of $Co(dmgBF_2)_2(MeCN)_2$ (II) in degassed CH₃CN with excitation at 340 nm.

Fig. S8. UV-Vis absorption spectra of QuCN⁺ (2×10⁻⁵ M), Co(dmgBF₂)₂(MeCN)₂ (II) (1.2 × 10⁻⁵ M) and **1a** (4×10⁻⁴ M), respectively in degassed CH₃CN; QuCN⁺ (2×10⁻⁵ M) in the presence of Co(dmgBF₂)₂(MeCN)₂ (II) (1.2 × 10⁻⁵ M) or **1a** (4×10⁻⁴ M), respectively in degassed CH₃CN; QuCN⁺ (2×10⁻⁵ M) in conjugation with Co(dmgBF₂)₂(MeCN)₂ (II) (1.2 × 10⁻⁵ M) and **1a** (4×10⁻⁴ M) in degassed CH₃CN.

Fig. S9. UV-Vis absorption spectra of **1a** (4×10^{-4} M) and **2a** (2×10^{-4} M) in anhydrous CH₃CN.

Fig. S10. UV-Vis absorption spectra of **1a** (4×10⁻⁴ M), **1a** (4×10⁻⁴ M) with $BF_3 \bullet Et_2O$ (8×10⁻⁵ M), **2a** (2×10⁻⁴ M) and **2a** (2×10⁻⁴ M) with $BF_3 \bullet Et_2O$ (4×10⁻⁵ M) in anhydrous CH₃CN.

Fig. S11. UV-Vis absorption spectra of $QuCN^+$ (2×10⁻⁴ M) and 2a (2×10⁻³ M) in anhydrous CH₃CN.

3.3 Kinetics isotopic effect experiment

A Pyrex tube equipped with a stir-bar was charged with $QuCN^+$ (1×10⁻² mmol, 2.69 mg), $Co(dmgBF_2)_2(CH_3CN)_2$ (II) (6×10⁻³ mmol. 2.8 mg) and CH_3CN (5 mL). After degassing by the argon, **1a** (0.10 mmol, 13.5 µL) and **D₂-1a** (0.1 mmol, 13.5 µL) were added and the pinholes were sealed by paraffin. The reaction mixture was irradiation at room temperature using a 500 W medium pressure Hanovia mercury lamp with a glass water cooling jacket ($\lambda > 300$ nm) for 1 h. And then the solvent of the reaction mixture was removed, the pure product was obtained by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1) to afford 17% combined products. Comparing the ¹H NMR spectra of **2a** and **D₂-2a**, we found the ratio of **2a**: **D₂-2a** was 0.55:0.45. So the KIE value ($k_H/k_D = 1.2$) was determined to be 1.2 (**Fig. S12-S13**).

4. Substrate synthesis

General procedures (1)

Methyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate (1h)

Methyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate was synthesized according the previous report.⁵ А 10 mL round-bottom flask was charged with 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (190.2 mg, 1 mmol), oxone (0.3 mmol) and methanol (3 mL). The mixture was stirred at 65 $\,^{\circ}$ C. After completion of the reaction that was confirmed by thin layer chromatography the crude mixture was cooled to room temperature, filtered and purified by column chromatography using silica gel (200-300 meshes silica gel) with ethyl acetate and petroleum ether as an eluent to afford the title compound as a white solid (150.2 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.06 (d, J = 8.0 Hz, 1H), 7.92 (m, 2H), 3.92 (s, 3H), 3.01 (t, J = 6.0 Hz, 2H), 2.72 – 2.64 (t, J = 6.4 Hz, 2H), 2.19 – 2.11 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ: 197.66, 166.32, 144.35, 135.53, 133.93, 130.19, 127.39, 127.25, 52.41, 39.12, 29.60, 23.07. HRMS (EI): m/z calculated for C₁₂H₁₂O₃ [M]⁺ 204.0786, found 204.0788.

Ethyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate (1i)

Ethyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate was synthesized according the previous report.⁵ А 10 mL round-bottom flask was charged with 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (285.3 mg, 1.5 mmol), oxone (0.45 mmol) and alcohol (5 mL). The mixture was stirred at 65 °C. After completion of the reaction that was confirmed by thin layer chromatography the crude mixture was cooled to room temperature, filtered and purified by column chromatography using silica gel (200-300 meshes silica gel) with ethyl acetate and petroleum ether as an eluent to afford the title compound as a colorless oil(192.3 mg, 59%). ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.07 (d, J = 8.6 Hz, 1H), 7.93 (m, 2H), 4.40 (q, J = 7.1 Hz, 2H), 3.02 (t, J = 6.1 Hz, 2H), 2.75 – 2.61 (t, J = 6.4 Hz, 2H), 2.22 – 2.10 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ : 197.86, 165.99, 144.41, 135.57, 134.43, 130.23, 127.49, 127.35, 61.51, 39.25, 29.72, 23.18, 14.39. HRMS (ESI): m/z calculated for C₁₃H₁₄O₃ [M+H]⁺ 219.1016, found 219.1010.

Butyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate (1j)

Butyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate was synthesized according the previous report.⁵ А 10 mL round-bottom flask charged with was 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (285.3 mg, 1.5 mmol), oxone (0.45 mmol) and *n*-butyl alcohol (5 mL). The mixture was stirred at 65 $^{\circ}$ C. After completion of the reaction that was confirmed by thin layer chromatography the crude mixture was cooled to room temperature, filtered and purified by column chromatography using silica gel (200-300 meshes silica gel) with ethyl acetate and petroleum ether as an eluent to afford the title compound as a colorless oil (142.6 mg, 38%).¹H NMR (400 MHz, CDCl₃, ppm) δ: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 1H), 7.92 (m, 2H), 4.33 (t, J = 6.6 Hz, 2H), 3.02 (t, J = 6.0 Hz, 2H), 2.73 - 2.64 (m, 2H), 2.74 (m, 2H), 2.742.21 – 2.09 (m, 2H), 1.80 – 1.69 (m, 2H), 1.55 – 1.41 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ: 197.83, 166.04, 144.41, 135.56, 134.45, 130.21, 127.47, 127.35, 65.38, 39.24, 30.82, 29.73, 23.17, 19.35, 13.83. HRMS (EI): m/z calculated for $C_{15}H_{18}O_3$ [M + H]⁺ 247.1329, found 247.1322.

Isopropyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate (1k)

Isopropyl 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate was synthesized according the previous report.⁶ To a 10 mL round-bottom flask, sulfuric acid (98%, 0.94 mmol, 50 µL) was added to a well-stirred mixture of 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (0.8 mmol, 152.16 mg), isopropanol (137 µL), and acetonitrile (7 mL) at room temperature, and the temperature was maintained at 80–85 °C for 18 h. The reaction mixture was concentrated under reduced pressure and purified over silica gel using ethyl acetate–petroleum ether to afford the title compound as a colorless oil(115 mg, 62%). ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.07 (d, *J* = 8.5 Hz, 1H), 7.93 (m, 2H), 5.38 – 5.15 (m, 1H), 3.02 (t, *J* = 6.0 Hz, 2H), 2.69 (t, *J* = 6.5 Hz, 2H), 2.23 – 2.07 (m, 2H), 1.38 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ : 197.95, 165.52, 144.40, 135.52, 134.90, 130.20, 127.51, 127.35, 69.09, 39.28, 29.76, 23.22, 22.02. HRMS (EI): m/z calculated for C₁₄H₁₆O₃ [M + H]⁺ 233.1172, found 233.1167.

General procedures (2)

4-Phenyl-3,4-dihydronaphthalen-1(2H)-one (1p)

4-phenyl-3,4-dihydronaphthalen-1(2*H*)-one was synthesized according the previous report.⁷ ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.12 (d, *J* = 7.7 Hz, 1H), 7.53 – 7.21 (m, 5H), 7.12 (d, *J* = 7.3 Hz, 2H), 6.99 (d, *J* = 7.7 Hz, 1H), 4.31 (dd, *J* = 7.7, 4.6 Hz, 1H), 2.69 (m, 2H), 2.48 (dd, *J* = 8.6, 4.5 Hz, 1H), 2.31 (m, *J* = 13.3, 8.7, 4.5 Hz, 1H).

6-Fluoro-4-(4-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one (1q)

6-fluoro-4-(4-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one was synthesized according the previous report.^{7 1}H NMR (400 MHz, CDCl₃, ppm) δ : 8.14 (dd, *J* = 8.7, 6.1 Hz, 1H), 7.20 – 6.95 (m, 5H), 6.60 (dd, *J* = 9.6, 2.1 Hz, 1H), 4.25 (dd, *J* = 8.6, 4.4 Hz, 1H), 2.85 – 2.57 (m, 2H), 2.44 (m, 1H), 2.34 – 2.19 (m, 1H).

7-Fluoro-4-(3-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one (1r)

7-fluoro-4-(3-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one was synthesized according the previous report.⁷ ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.70 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.39 – 7.04 (m, 5H), 6.66 (d, *J* = 9.9 Hz, 1H), 4.21 (dd, *J* = 7.4, 4.8 Hz, 1H), 2.62 (m, 2H), 2.40 (m, 1H), 2.21 (m, 1H).

6-Chloro-4-(4-chlorophenyl)-3,4-dihydronaphthalen-1(2H)-one (1s)

6-chloro-4-(4-chlorophenyl)-3,4-dihydronaphthalen-1(2H)-one was synthesized according the

previous report.^{7 1}H NMR (400 MHz, Acetone, ppm) δ: 8.02 (d, *J* = 8.3 Hz, 1H), 7.53 – 7.35 (m, 3H), 7.28 – 7.20 (d, *J* = 8.0 Hz, 2H), 6.98 (s, 1H), 4.46 (dd, *J* = 7.8, 4.3 Hz, 1H), 2.75 – 2.57 (m, 2H), 2.46 (m, 1H), 2.34 (m, 1H).

6-Bromo-4-(4-bromophenyl)-3,4-dihydronaphthalen-1(2H)-one (1t)

6-bromo-4-(4-bromophenyl)-3,4-dihydronaphthalen-1(2H)-one was synthesized according the previous report.⁷ ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.96 (d, *J* = 8.4 Hz, 1H), 7.53 – 7.41 (m, 3H), 7.10 (s, 1H), 6.99 (d, *J* = 8.2 Hz, 2H), 4.22 (dd, *J* = 8.1, 4.5 Hz, 1H), 2.75 – 2.55 (m, 2H), 2.43 (m, 1H), 2.29 – 2.19 (m, 1H).

5. Characterization of products (2a – 2u)

Naphthalen-1-ol (2a)

White solid. Isolated yield: 37.5 mg, 65%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.19 (m, 1H), 7.89 – 7.73 (m, 1H), 7.57 – 7.38 (m, 3H), 7.32 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 7.4 Hz, 1H), 5.26 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 151.4, 134.9, 127.8, 126.6, 126.0, 125.4, 124.4, 121.6, 120.9, 108.8.

HRMS (ESI): m/z calculated for $C_{10}H_8O [M -H]^- 143.0502$ found 143.0498.

6-Fluoronaphthalen-1-ol (2b)

White solid. Isolated yield: 32.3 mg, 50%. Petroleum ether/EtOAc=20/1-15/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.79 (m, 2H), 7.43 (d, J = 8.3 Hz, 1H), 7.36 – 7.17 (m, 2H), 6.83 (d, J = 7.4 Hz, 1H), 5.31 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 160.6 (d, J = 245.1 Hz), 151.1 (d, J = 5.4 Hz), 131.9 (s), 130.2 (d, J = 8.8 Hz), 125.3 (d, J = 8.9 Hz), 125.1 (d, J = 2.5 Hz), 120.7 (s), 116.9 (d, J = 25.5 Hz), 109.5 (s), 105.7 (d, J = 22.3 Hz).

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ: -114.69.

HRMS (ESI): m/z calculated for $C_{10}H_7FO [M - H]^-161.0408$ found 161.0396.

7-Fluoronaphthalen-1-ol (2c)

White solid. Isolated yield: 29.0 mg, 45%. Petroleum ether/EtOAc=15/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.84 – 7.74 (m, 2H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.31 – 7.20 (m, 2H), 6.83 (d, *J* = 7.4 Hz, 1H), 5.25 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 160.6 (d, *J* = 245.1 Hz), 151.1 (d, *J* = 5.4 Hz), 131.9 (s), 130.2 (d, *J* = 8.8 Hz), 125.3 (d, *J* = 8.9 Hz), 125.1 (d, *J* = 2.5 Hz), 120.7 (d, *J* = 1.0 Hz), 117.0 (d, *J* = 25.4 Hz), 109.5 (s), 105.7 (d, *J* = 22.3 Hz).

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ: -114.68.

HRMS (ESI): m/z calculated for C₁₀H₇FO [M -H]⁻ 161.0481, found 161.0395.

6,7-Difluoronaphthalen-1-ol (2d)

White solid. Isolated yield: 31.1 mg, 43%. Petroleum ether/EtOAc=20/1-15/1. ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.92 (dd, *J* = 11.5, 8.2 Hz, 1H), 7.51 (dd, *J* = 11.0, 7.9 Hz, 1H), 7.37 – 7.21 (m, 2H), 6.78 (d, *J* = 7.3 Hz, 1H), 5.36 (br, 1H). ¹3C NMAP (401 MHz, CDCl, ppm) δ : 151 2 (dd, *J* = 5.2, 1.0 Hz), 150 7 (dd, *J* = 250 2, 14.8 Hz), 140 7

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 151.2 (dd, *J* = 5.2, 1.9 Hz), 150.7 (dd, *J* = 250.2, 14.8 Hz), 149.7 ((dd, *J* = 249.4, 15.2 Hz) 131.9 (d, *J* = 7.6 Hz), 126.5 (d, *J* = 2.4 Hz), 121.3 (d, *J* = 7.1 Hz), 120.0 (dd, *J* = 4.9, 1.9 Hz), 113.5 (d, *J* = 16.7 Hz), 108.8 (d, *J* = 18.3 Hz), 108.8 (d, *J* = 2.2 Hz).

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ: -136.91 (d, *J* = 20.7 Hz), -137.51 (d, *J* = 20.7 Hz).

HRMS (ESI): m/z calculated for $C_{10}H_6F_2O$ [M -H]⁻179.0314 found 179.0305.

5-Chloronaphthalen-1-ol (2e)

White solid. Isolated yield: 20.3 mg, 28%. Petroleum ether/EtOAc=15/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.15 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 7.4 Hz, 1H), 7.47 – 7.33 (m, 2H), 6.88 (d, *J* = 7.5 Hz, 1H), 5.35 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 151.8, 132.4, 132.1, 127.1, 127.0, 125.9, 125.1, 121.1, 117.4, 109.7.

HRMS (ESI): m/z calculated for C₁₀H₇CIO [M -H]⁻ 177.0113, found 177.0103.

6-Chloronaphthalen-1-ol (2f)

White solid. Isolated yield: 23.9 mg, 34%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, $CDCl_3$, ppm) δ : 8.14 (d, J = 9.0 Hz, 1H), 7.79 (s, 1H), 7.42 (d, J = 9.0 Hz, 1H), 7.37 – 7.29 (m, 2H), 6.80 (d, J = 6.5 Hz, 1H), 5.27 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 151.6, 135.6, 132.6, 127.3, 126.4, 126.2, 123.8, 122.8, 120.0, 109.0.

HRMS (ESI): m/z calculated for $C_{10}H_7CIO [M -H]^- 177.0113$, found 177.0101.

7-Chloronaphthalen-1-ol (2g)

White solid. Isolated yield: 16.5 mg, 22%. Petroleum ether/EtOAc=15/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.17 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.41 (m, 2H), 7.35 – 7.19 (m, 1H), 6.81 (d, *J* = 7.4 Hz, 1H), 5.23 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 150.7, 133.1, 131.3, 129.4, 127.5, 126.2, 125.2, 121.2, 120.7, 109.6.

HRMS (ESI): m/z calculated for $C_{10}H_7CIO [M - H]^-$ 177.0113, found177.0099

Methyl- 5-hydroxy-2-naphthoate (2h)

White solid. Isolated yield: 38.5 mg, 48%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.58 (s, 1H), 8.27 (d, *J* = 8.8 Hz, 1H), 8.06 (dd, *J* = 8.8, 1.4 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.04 (br, 1H), 4.00 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 167.6, 151.6, 134.0, 130.9, 128.0, 126.89, 126.6, 124.7, 122.4, 122.1, 111.1, 52.5.

HRMS (ESI): m/z calculated for $C_{12}H_{10}O_3$ [M -H]⁻ 201.0557, found 201.0548.

Ethyl 5-hydroxy-2-naphthoate (2i)

White solid. Isolated yield: 32.2 mg, 37%. Petroleum ether/EtOAc=20/1-15/1.

¹H NMR (400 MHz, CD₃COCD₃, ppm) δ : 9.26 (br, 1H), 8.55 (s, 1H), 8.32 (d, *J* = 8.8 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 7.7 Hz, 1H)., 7.07 (d, *J* = 7.5 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CD₃COCD₃, ppm) δ: 167.0, 154.1, 135.0, 131.1, 129.1, 128.2, 127.8, 124.7, 123.5, 121.4, 111.4, 61.6, 14.7.

HRMS (ESI): m/z calculated for $C_{13}H_{12}O_3$ [M -H]⁻ 215.0714, found 215.0706.

Butyl 5-hydroxy-2-naphthoate (2j)

White solid. Isolated yield: 49.1 mg, 50%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.58 (s, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.47 (br, 1H), 4.42 (t, J = 6.6 Hz, 2H), 1.90 – 1.72 (m, 2H), 1.62 – 1.42 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 167.5, 151.8, 134.0, 130.8, 128.2, 126.9, 126.7, 124.4, 122.4, 121.9, 111.0, 65.4, 30.9, 19.4, 13.9.

HRMS (ESI): m/z calculated for $C_{15}H_{16}O_3$ [M -H]⁻ 243.1027, found 243.1022.

Isopropyl 5-hydroxy-2-naphthoate (2k)

White solid. Isolated yield: 36.5 mg, 40%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.57 (s, 1H), 8.28 (d, *J* = 8.8 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.47 (br, 1H), 5.45 – 5.27 (m, 1H), 1.44 (d, *J* = 6.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 167.1, 151.9, 134.0, 130.8, 128.5, 126.9, 126.7, 124.5, 122.4, 121.8, 111.0, 69.1, 22.1.

HRMS (ESI): m/z calculated for C₁₄H₁₄O₃ [M -H]⁻ 229.0870 found 229.0864.

2-Methylnaphthalen-1-ol (2m)

Colorless oil. Isolated yield: 30.5 mg, 48%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.13 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.52 - 7.35 (m, 3H), 7.25 (d, *J* = 8.1 Hz, 1H), 5.10 (br, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 148.7, 133.5, 129.1, 127.8, 125.5, 125.4, 124.4, 121.0, 120.3, 116.4, 15.8.

HRMS (ESI): m/z calculated for C₁₁H₁₀O [M -H]⁻157.0659, found 157.0648.

4-Methylnaphthalen-1-ol (2n)

White solid. Isolated yield: 45.0 mg, 71%. Petroleum ether/EtOAc=20/1-10/1.

¹H NMR (400 MHz, $CDCl_3$, ppm) δ : 8.23 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.60 –7.44 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 5.16 (br, 1H), 2.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 150.0, 133.7, 126.8, 126.4, 126.2, 125.1, 124.8, 124.4, 122.2, 18.9.

HRMS (ESI): m/z calculated for C₁₁H₁₀O [M -H]⁻ 157.0659, found 157.0656.

4-PhenyInaphthalen-1-ol (2p)

White solid. Isolated yield: 51.0 mg, 58%. Petroleum ether/EtOAc=50/1-20/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.57 – 7.35 (m, 7H), 7.25 (d, *J* = 7.7 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 5.32 (br, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ : 151.1, 140.9, 133.4, 132.8, 130.4, 128.4, 127.1, 127.0, 126.7, 126.1, 125.3, 124.0, 122.0, 108.3. HRMS (ESI): m/z calculated for C₁₆H₁₂O [M -H]⁻ 219.0815, found 219.0807.

6-Fluoro-4-(4-fluorophenyl)naphthalen-1-ol (2q)

White solid. Isolated yield: 20.5 mg, 40%. Petroleum ether/EtOAc=100/1-70/1.

¹H NMR (400 MHz, CD₃COCD₃, ppm) δ : 9.35 (br, 1H), 8.39 (dd, *J* = 9.1, 6.2 Hz, 1H), 7.48 (dd, *J* = 8.1, 5.8 Hz, 2H), 7.41 – 7.23 (m, 5H), 6.98 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (101 MHz, CD₃COCD₃, ppm) δ : 162.9 (d, J = 244.9 Hz), 162.2 (d, J = 243.9 Hz), 154.0, 137.6 (d, J = 3.3 Hz), 134.7 (d, J = 8.7 Hz), 132.6 (d, J = 8.0 Hz), 130.7 (d, J = 5.3 Hz), 129.7, 126.5 (d, J = 9.3 Hz), 123.0, 116.0 (d, J = 21.5 Hz), 115.3 (d, J = 25.3 Hz), 109.2 (d, J = 22.1 Hz), 108.1 (d, J = 2.1 Hz).

¹⁹F NMR (377 MHz, CD₃COCD₃, ppm) δ: -115.10, -117.29.

HRMS (ESI): m/z calculated for $C_{16}H_{10}F_2O$ [M -H]⁻ 255.0627, found 255.0622.

7-Fluoro-4-(3-fluorophenyl)naphthalen-1-ol (2r)

White solid. Isolated yield: 12.8 mg, 25%. Petroleum ether/EtOAc=100/1-50/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.89 (dd, J = 10.3, 2.4 Hz, 1H), 7.84 (dd, J = 9.3, 5.5 Hz, 1H), 7.43 (dd, J = 14.3, 7.5 Hz, 1H), 7.30 – 7.04 (m, 5H), 6.89 (d, J = 7.7 Hz, 1H), 5.52 (br, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 162.9 (d, *J* = 236.1 Hz), 160.5 (d, *J* = 235.9 Hz), 151.0 (d, *J* = 5.3 Hz), 142.9 (d, *J* = 7.8 Hz), 132.2, 129.9 (d, *J* = 8.5 Hz), 129.7, 128.5 (d, *J* = 8.7 Hz), 126.2 (d, *J* = 2.4 Hz), 126.1 (d, *J* = 2.9 Hz), 125.7 (d, *J* = 8.9 Hz), 117.3 (d, *J* = 12.4 Hz), 117.0 (d, *J* = 16.2 Hz), 114.2 (d, *J* = 21.0 Hz), 109.1, 106.2 (d, *J* = 22.2 Hz).

¹⁹F NMR (377 MHz, CD₃COCD₃, ppm) δ: -114.89, -117.16.

HRMS (ESI): m/z calculated for $C_{16}H_{10}F_2O$ [M -H]⁻ 255.0627, found 255.0618.

6-Chloro-4-(4-chlorophenyl)naphthalen-1-ol (2s)

White solid. Isolated yield: 25.9 mg, 45%. Petroleum ether/EtOAc=100/1-80/1.

¹H NMR (400 MHz, CD₃COCD₃, ppm) δ: 9.45 (br, 1H), 8.34 (d, *J* = 9.0 Hz, 1H), 7.74 (s, 1H), 7.51 (m, 5H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (101 MHz, CD₃COCD₃, ppm) δ: 154.3, 140.1, 134.3, 133.7, 133.3, 132.7, 130.4, 130.0, 129.6, 126.3, 125.9, 124.8, 124.4, 109.3.

HRMS (ESI): m/z calculated for $C_{16}H_{10}CI_2O [M - H]^2 287.0036$, found 287.0035.

6-Bromo-4-(4-bromophenyl)naphthalen-1-ol (2t)

White solid. Isolated yield: 26.5 mg, 35%. Petroleum ether/EtOAc=100/1-80/1.

¹H NMR (400 MHz, CD₃COCD₃, ppm) δ : 9.45 (br, 1H), 8.27 (d, *J* = 9.0 Hz, 1H), 7.91 (s, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 9.0 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (101 MHz, CD₃COCD₃, ppm) δ: 154.3, 140.5, 134.6, 133.0, 132.6, 130.4, 129.9, 128.9, 128.1, 126.0, 124.6, 121.8, 121.8, 109.5.

HRMS (ESI): m/z calculated for $C_{16}H_{10}Br_2O [M - H]^-$ 376.9005, found 376.9004.

6. Reference

- (a) K. Ohkubo, T. Kobayashi, S. Fukuzumi, *Angew. Chem. Int. Ed.* **2011**, *50*, 8652-8655; (b) Y.-W.
 Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q.-Y. Meng, L.-Z. Wu, C.-H. Tung, *J. Am. Chem. Soc.* 2016, **138**, 10080-10083.
- 2 (a) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, *Acc. Chem. Res.* 2009, 42, 1995-2004; (b) V. Artero, M. Chavarot-Kerlidou, M. Fontecave, *Angew. Chem. Int. Ed.* 2011, 50, 7238-7266.
- 3 (a) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, *Chem. Rev.* 2007, 107, 2300-2318; (b) J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, *Beilstein J. Org. Chem.* 2012, 8, 2025-2052; (c) K. G. Maskill, J. P. Knowles, L. D. Elliott, R. W. Alder, K. I. Booker-Milburn, *Angew. Chem. Int. Ed.* 2013, 52, 1499-1502; (d) Z. J. Garlets, J. D. Nguyen, C. R. J. Stephenson, *Isr. J. Chem.* 2014, 54, 351-360; (e) E. M. Schuster, P. Wipf, *Isr. J. Chem.* 2014, 54, 361-370; (g) Y. Su, N. J. W. Straathof, V. Hessel, T. Noël, *Chem. Eur. J.* 2014, 20, 10562-10589;
- 4 F.-L. Yang, Y. Gui, B.-K. Yu, Y.-X. Jin, S.-K. Tian, Adv. Synth. Catal. 2016, **358**, 3368-3372.
- 5 A. K. Padala, V. Saikam, A. Ali, Q. N. Ahmed, *Tetrahedron* 2015, **71**, 9388-9395.
- 6 S. W. Wright, D. L. Hageman, A. S. Wright, L. D. McClure, *Tetrahedron Lett.* 1997, **38**, 7345-7348.
- 7 D. Wei, Y. Li, F. Liang, Adv. Synth. Catal. 2016, **358**, 3887-3896.
- 8 A. Odedra, C.-J. Wu, T. B. Pratap, C.-W. Huang, Y.-F. Ran, R.-S. Liu, *J. Am. Chem. Soc.* 2005, **127**, 3406-3412.

7. NMR spectra for substrates

 $\begin{array}{c} 8.085\\ 7.9054\\ 7.926\\ 7.926\\ 7.926\\ 4.402\\ 4.368\\ 4.368\\ 1.4.368\\ 2.075\\ 2.075\\ 1.307\\ 1.4389\\ 1.407\\ 1.407\\ 1.389\end{array}$

8.083 8.071 8.071 8.071 7.267 7.260 7.260 5.295 5.295 5.295 5.295 5.295 5.295 5.295 5.295 5.295 7.260 7.2000 7.2000 7.2000 7.200 7.200 7.200 7.200 7.200 7.200

8. NMR spectra for products

7.811 7.733 7.773 7.773 7.773 7.7420 7.7420 7.7280 7.7260 7.7260 7.7260 7.7260 6.817 6.817

7,9027,8777,8777,4377,4377,4377,4207,74207,72287,72287,71017,71007,700

