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1. General Considerations

The solids were characterized by the following techniques: 
Elemental analyses were carried out on a Perkin-Elmer CHNS Analyzer 2400 and an Inductively Coupled 
Plasma Optical Emission Spectroscopy (ICP OES) Perkin Elmer 40 for metal determination.

FTIR spectra were recorded between 4000 and 400 cm-1 with a Bruker IFS 66V/S, using the KBr pellets 
technique (about 1 mg of sample and 300 mg of dry KBr were used in the preparation of pellets).

High resolution 13C and 31 P MAS NMR spectra of powdered samples were recorded at room temperature 
under magic angle spinning (MAS) on a Bruker AV-400-WB spectrometer equipped with an FT unit. The 
13C cross-polarization (CP-MAS) spectra were acquired by using a contact time of 3.5 ms and recycle of 
4 s. All spectra were recorded with a 4 mm ZrO probe and Kel-F plug and at sample spinning rate of 10 
kHz.

The thermogravimetric and differential thermal analyses (TGA-DTA) were performed using Seiko 
TG/DTA 320U equipment in the temperature range between 25 and 850 ºC in air (100 mL min-1 flow) 
atmosphere and a heating rate of 10 ºC min-1. 

SEM analysis. Particle morphology and size were studied by a scanning electron microscope (XL30, 
Philips) operating at 25 k. One droplet (15 – 20 µL) of the corresponding suspension was placed on a 
glass surface (14 mm diameter) and allowed to dry, after which, the sample was covered with gold or 
chromium using a sputter coating device (Polaran SC7640, Thermo VG Scientific). Transmission electron 
microscopy (TEM) micrographs were obtained with a JEOL JEM1010 microscope operating at 25 kV. 

The textural properties were analyzed by N2 adsorption/desorption experiments. Isotherms were measured 
with an AUTOSORB-1 from Quantachrome Instruments at 77K in the relative pressure range of 10-2 to 
1. Before adsorption measurements, the samples were activated and outgassed at 473 K overnight. The 
specific total surface area was calculated using the Brunauer–Emmett–Teller (BET) method1, selecting 
the adsorption data respective to the P/P0 between 0.05 and 0.2 (adjusting the C value from 50 to 150)2, 
considering a nitrogen molecule cross-section area value of 0.162 nm2.3 The external surface area and 
micropore volume was obtained by means of the t-plot according to De Boer’s method4. The total pore 
volume(Vp) of the solids was estimated from the amount of nitrogen adsorbed at a relative pressure of 
0.99, assuming that the densityof the nitrogen condensed in the pores is equal to that of liquid nitrogen at 
-196 ºC, i.e. 0.81 g/cm3.5 The pore size distributions of microporous and mesoporous regions have been 
performed byusing, respectively, the Horvath–Kawazoe6 and the Barrett–Joyner–Halenda (BJH) methods7.
Qualitative and quantitative TXRF analysis were performed with a benchtop S2 PicoFox TXRF 
spectrometer from Bruker Nano (Germany) equipped with a Mo X-ray source. Conditions: 50 kV, 600 
μA, a multilayer monochromator with 80% of reflectivity at 17.5 keV (Mo Kα), a XFlash SDD detector 
with an effective area of 30 mm2 and an energy resolution better than 150 eV for 5.9 keV (Mn Kα).
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2. 13C and 31P NMR spectra.
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Figure S1. Solid State 31P-NMR (left) of KPhos(Ru) and 31P-NMR of KPhos(Ru)-Bi (right). 
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Figure S2. Solid State 31P-NMR of KPhos(AuCl) (left) KPhos(AuNTf2) (right).
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Figure S3. Solid State 13C-NMR (left) and 31P-NMR (right).of KPhosBi.
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Figure S4. Solid State 13C-NMR (left) and 31P-NMR (right) of KPhosBi(Au).
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3. Infrared Spectroscopy spectra

Figure S5. FT-IR of Gold compounds
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Figure S6. FT-IR of KPhos(Ru) after the 7th cycle. 
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4. Scanning electron microscopy (SEM) images.

Figure S7. Different regions of KPhos(Ru) 

Figure S8. KPhos(Ru)Bi 

Figure S9. KPhos(AuNTf2) 
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Figure S10. KPhos(AuCl) 

 
Figure S11. Post-functionalized KPhosBi(Au).



8

5. Transmission electron microscopy (TEM) images.
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Figure S12. TEM images 
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6. Textural properties analysis

 

10 15 20 25 30

0

250

500

750

1000

 KPhos(Ru)
 KPhos(Ru)-Bi

Half Pore Width (A)

D
iff

er
en

tia
l P

or
e 

V
ol

um
e 

(c
m

3 /g
) K

Ph
os

(R
u)

0

50

100

150

200

250

300

  D
iff

er
en

tia
l P

or
e 

V
ol

um
e 

(c
m

3 /g
) K

Ph
os

(R
u)

-B
i

Figure S13. Pore distribution by N2-DFT methods.
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Figure S14. N2 adsorption/desorption isotherms of: A) KPhos(AuNTf2), B) KPhos(AuCl)
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Figure S15. N2 adsorption/desorption isotherm of KPhosBi.
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7. X-ray photoelectron spectroscopy (XPS) spectra
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Figure S16. XPS Survey of polymers
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8. SEM-EDX analysis
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Figure S17. SEM-EDX analysis.

1

2

12



12

9. Catalytic studies

Figure S18. a) Kinetic profile of synthesis of imines catalyzed by KPhos(Ru). b) Hot filtration 
experiment.
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Figure S19.Kinetic profile of the hydration of phenylacetylene catalyzed by KPhos(AuCl) in 
presence of different silver-containing co-catalysts.
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Figure S20. Hot filtration experiment for KPhos(AuNTf2).
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Figure S21. XPS spectra of recovered KPhosRu in the region of Ru(3p), P(2p).
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10. GC chromatograms. Representative examples

Figure S22. Table 2, entry 1
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Figure S24. Table 3, entry 7.
O
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Figure S25. Table 3, entry 6
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* Biphenyl was added as an external reference.
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Figure S26. Table 5, entry 5.
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