ELECTRONIC SUPPORTING INFORMATION Amyloidogenic model peptides as catalysts for stereoselective aldol reaction

Juliane N. B. D. Pelin,^a Barbara B. Gerbelli,^a Bruna M. Soares,^a Andrea M. Aguilar,*^b Wendel A. Alves*^a

^aCentro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, Brazil.

^bInstituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil.

Corresponding Authors *E-mail: andrea.aguilar@unifesp.br. Tel.: +55 11 3385 3473. *E-mail: wendel.alves@ufabc.edu.br. Tel.: +55 11 4996 0193.

Table of Contents	1
Mass Spectrometry Analysis of the Peptides	2
Estimation of Critical concentrations by Fluorescence Spectroscopy	4
FTIR Spectroscopy	4
DLS Assays	5
Circular Dichroism Spectroscopy	6
Titration Curves	7
Spectroscopic and Chiral-HPLC Analysis for the Aldol Product	8

Figure S1. [RF]₄ chromatogram and mass spectrometry analysis.

Figure S2. P[RF]₄ chromatogram and mass spectrometry analysis.

Estimation of Critical Concentrations by Fluorescence Spectroscopy

Figure S3. Emission spectrum for (A) $[RF]_4$ and (B) $P[RF]_4$ solutions with different concentration of peptides in an aqueous medium by using 0.01 mg·mL⁻¹ ThT.

FTIR Spectroscopy

Figure S4. The absorbance FTIR spectra for $[RF]_4$ (blue line) and $P[RF]_4$ (red line) above *cac* in D₂O solutions.

DLS Assays

Figure S5. DLS correlation curves in function of decay time for (A) $[RF]_4$ and (C) $P[RF]_4$ in water solution at *cac*. Curves of intensity distribution as a function of ratio hydrodynamic for (B) $[RF]_4$ and (D) $P[RF]_4$, respectively, at *cac* in water.

Titration Curves

At low pH, the predominant ionic species is the fully protonated form, ⁺H₃N-peptides-COOH. When pH = pK_{a1} , equimolar concentrations of ⁺H₃N-peptides-COOH and ⁺H₃Npeptides-COO⁻ species are present at pH ≈ 2.0 for [RF]₄ and P[RF]₄ species. As the pH increases, the α -NH₃⁺ and guanidinium groups will be deprotonated at $pK_{a2} \approx 9.2$ and $pK_{a3} \approx 12.3$, respectively. The isoelectric point (pI) is the average of the pKas of the two most similar acids (value). Hence, pI = 1/2 ($pK_{a2} + pK_{a3}$) is ≈ 10.7 for both peptides.

Figure S6. Titration curves for $[RF]_4$ and $P[RF]_4$ solutions at pH ranges of 1.0 to 14, by using 0.1 mol L⁻¹ NaOH.

Circular Dichroism Spectroscopy

Figure S7. CD spectra of $[RF]_4$ and $P[RF]_4$ in aqueous solution above *cac* in different pHs.

ALDOL REACTIONS

Spectroscopic Data

(S)-2-((R)-Hydroxy(4-nitrophenyl)methyl)cyclohexan-1-one

Figure S8. Representative H NMR spectra of crude aldol product.

¹**H NMR** (300 MHz, CDCl₃): δ 8.22-8.18 (m, 2H, ArH), 7.51-7.47 (m, 2H, ArH), 5.49 (br s, 1H, CHOH of *syn* diastereoisomer), 4.90 (dd, J = 7.5 Hz, 3.0 Hz, 1H, CHOH of *anti* diastereoisomer), 2.66-2.30 (m, 1H, CHCHOH), 2.66-2.30 (m, 2H, CH₂C(O)), 2.16-1.24 (m, 6H, chex-H).

¹³C NMR (75 MHz, CDCl₃): δ 214.9, 148.5, 147.7, 128.0, 123.7, 74.1, 57.3, 42.8, 30.9, 27.8, 24.8.

Chiral-phase HPLC analysis

Figure S9. HPLC chromatogram for racemic aldol product. Conditions: Chiralpak AD-H, hexane/2-propanol (90/10); 1.0 mL·min⁻¹, λ = 254 nm.

Figure S10. Representative HPLC chromatogram for chiral aldol product. Conditions: Chiralpak AD-H, hexane/2-propanol (90/10); 1.0 mL·min⁻¹, λ = 254 nm.