Functions of Hydroxyapatite in Fabricating N-doped Carbon for Excellent Catalyst and Supercapacitor

Minzhe Chu, a Yingying Zhai, a Ningzhao Shang, b Xiaoyu Zhang, b Chun Wang, *b Yunrui Zhang, a

Haijun Wang^a and Yongjun Gao*^a

a Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry

and Environmental Science, Hebei University, 071002, Baoding, PR China.

b College of Science, Hebei Agricultural University, 071001, Baoding PR China.

E-mail: <u>yjgao@hbu.edu.cn</u> (Yongjun Gao) <u>chunwang69@126.com</u> (Chun Wang)

Contents

Experimental
Chemicals
Characterizations4
Characterizations and Results
Fig. S1 The XRD of different carbon materials5
Fig. S2 Raman spectra of g-C(HAP), g-C(SiO ₂), g-C(SiO ₂)-Ca and g-C(SiO ₂)-P6
Fig. S3 a), c), e) and g) N ₂ absorption-desorption isotherms of g-C(HAP), g-C(SiO ₂), g-C(SiO ₂)-P and g-C(SiO ₂)-Ca; b), d), f) and h) pore size distributions of g-C(HAP), g-C(SiO ₂), g-C(SiO ₂)-P and g-C(SiO ₂)-Ca based on NLDFT model of adsorption isotherms
Table S1. The textural properties of all samples
Fig. S4 a) Full XPS spectrum of g-C(HAP), g-C(SiO ₂), g-C(SiO ₂)-P and g-C(SiO ₂)-Ca, b) XPS C1s spectrum of g-C(HAP), g-C(SiO ₂), g-C(SiO ₂)-P and g-C(SiO ₂)-Ca9
Fig. S5 The structures of imines were all confirmed by GC-MS10
Fig. S6 The conversion of benzylamine and the yield profile of the product imine at different reaction times. Reaction conditions: benzylamine (1 mmol), solvent (3 mL), NC(HAP) (0.01 g), O_2 balloon, 50 °C11
Fig. S7 The experiment of silanization to capture intermediate which confirmed by GC-MS. a) phenylmethanimine, b) N-benzyl-1-phenylmethanediamine, c) hydroperoxide, d) ammonia12
Fig. S8 The configurations and energy of the oxygen adsorbed on model catalyst13
Fig. S9 The configurations and energy of benzylamine adsorbed on model catalyst anchoring oxygen molecule
Fig. S10 a) The filtrate was obtained without NC(HAP) catalyst; b) The filtrate was obtained by hydroperoxide oxidized TMB

Experimental

Chemicals

Hydroxylapatite (>97 %), ammonium phosphate dibasic (AR. 99 %) and benzylamine (AR. 99 %) were purchased from Shanghai Macklin Biochemical Corporation. 4- (Trifluoromethyl) benzylamine (98 %) and M-tolylmethanamine (98 %) were purchased from LeYan factory. 1, 10-Phenantthroline (AR. 99 %) was purchased from Shanghai Macklin Chemical Technology Factory. Phenyl hydrazine (AR.), 4-Bramabenzylamine (97%) and 2-Thiophenrmthylamine (97%) were purchased from Shanghai Energy Chemical Technology Factory. 4-Methoxybenzylamine (95 %) was purchased from Shanghai Shuya factory. Glucose (AR.) was purchased from Tianjin Kermol Corporation. 4-Chlorobenzylamine (98%) and 4-Fluorobenzylamine (99%) were purchased from Aladdin Industrial Corporation. 3, 3', 5, 5'-Tetramethylbenzidine (AR. ≥99 %) was purchased from Sigma-Aldrich (Shanghai) Trading Corporation. Benzoic Acid (AR. ≥99 %) and dichloromethane (AR. ≥99 %) were purchased Tianjin chemical reagent factory. Sodium hydroxide was Tianjin Beichen regent factory. Benzoquinone (AR. ≥99 %) was purchased from J&K Scientific LTD. Phenol was purchased from Tianjin Fuchen chemical reagents factory. Tertiary butanol (GR. 98 %) was purchased from Tianjin Guangfu fine chemical research institute. All chemicals were used without further purification.

Characterizations

Transmission electronic microscopy (TEM, Tecnai G2 F20) was used to research the morphology of NC(HAP). X-ray diffractometer (XRD, Bruker D8 ADVANCE) with Cu Ka ($\lambda = 1.5418$ Å) recorded the diffraction (XRD) patterns of all samples. X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI) was applied to research the valence states of all elements in samples. Laser Confocal Micro-Raman Spectroscope (LabRAM HR800, Horiba Jobin Yvon, France) was utilized to present Raman spectra of all samples with 532 nm of laser wavelength. The annealing process of HAP, HAP+phen and phen were researched on Thermogravimetric analyzer (TGA NETZSCH STA 449C). The material was pretreated in vacuum at 150 ° C for 4 hours and the nitrogen adsorption-desorption experiment was carried out on an automated specific surface (JWGB SCI. & TECH. , Beijing).

Characterizations and Results

Fig. S1 The XRD of different carbon materials.

Fig. S2 Raman spectra of g-C(HAP), g-C(SiO₂), g-C(SiO₂)-Ca and g-C(SiO₂)-P.

Fig. S3 a), c), e) and g) N₂ absorption-desorption isotherms of g-C(HAP), g-C(SiO₂), g-C(SiO₂)-P and g-C(SiO₂)-Ca; b), d), f) and h) pore size distributions of g-C(HAP), g-C(SiO₂), g-C(SiO₂)-P and g-C(SiO₂)-Ca based on NLDFT model of adsorption isotherms.

Sample	S _{BET} ^a (m²/g)	V _{total} ^b (cm ³ /g)	V _{micro} ^c (cm ³ /g)	P _{micropore} d (nm)	P _{mesopore} e (nm)
NC(HAP)-600	66	0.037	0.007	1.16	2.185
NC(HAP)	115	0.106	0.04	0.598	2.386
NC(HAP)-800	162	0.610	0.071	0.634	-
$NC(SiO_2)$	518	0.315	0.226	0.599	2.069
g-C(SiO ₂)-P	34.7	0.061	0.007	1.503	2.187
g-C(SiO ₂)- Ca	105	0.371	0.046	0.64	16.85
g-C(HAP)	819	1.698	0.335	0.620	2.078
g-C(SiO ₂)	764.7	0.947	0.29	0.645	4.799

Table S1. The textural properties of all samples.

^a Specific BET surface area.

^b Total pore volume, calculated according to nonlocal density functional theory (NLDFT) method.

^c Micropore volume, calculated according to Horvaih-Kawazoe (HK) method.

^d Micropore size, calculated according to Horvaih-Kawazoe (HK) method.

^e Mesopore size, calculated by the Barret–Joyner–Halenda (BJH) method.

Fig. S4 a) Full XPS spectrum of g-C(HAP), g-C(SiO₂), g-C(SiO₂)-P and g-C(SiO₂)-Ca, b) XPS C1s spectrum of g-C(HAP), g-C(SiO₂), g-C(SiO₂)-P and g-C(SiO₂)-Ca.

Fig. S5 The structures of imines were all confirmed by GC-MS.

Fig. S6 The conversion of benzylamine and the yield profile of the product imine at different reaction times. Reaction conditions: benzylamine (1 mmol), solvent (3 mL), NC(HAP) (0.01 g), O_2 balloon, 50 °C.

Fig. S7 The experiment of silanization to capture intermediate which confirmed by GC-MS. a) phenylmethanimine, b) N-benzyl-1-phenylmethanediamine, c) hydroperoxide, d) ammonia.

Fig. S8 The configurations and energy of the oxygen adsorbed on model catalyst.

Fig. S9 The configurations and energy of benzylamine adsorbed on model catalyst anchoring oxygen molecule.

Fig. S10 a) The filtrate was obtained without NC(HAP) catalyst; b) The filtrate was obtained by hydroperoxide oxidized TMB.