Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019



Fig. S1. XRD patterns of H $\beta$ -x zeolites with different Si/Al ratios



Fig. S2 The HRTEM images and the EDX elemental mapping analysis of NiMoC/H $\beta$ -27 catalyst



Fig. S3. The reaction path of naphthalene hydrogenation over NiMoC/Hβ-x catalysts



Fig. S4 Conversion of naphthalene (A) and decalin selectivity (B) over different catalysts at different reaction times. Feedstock was 5% naphthalene diluted in n-heptane. The reaction was performed at 225°C, LHSV =  $2 h^{-1}$ , P(H<sub>2</sub>) = 3MPa, ratio (H<sub>2</sub>/Oil) = 600, and hydrogenated product was collected every hour.



Fig. S5 The reaction network of quinoline hydrogenation in the presence of 5% naphthalene



Fig. S6 The crystal structure of  $Ni_3Mo_3C$  phase. (a) a portion of the Ni subtructure of the  $Ni_3Mo_3C$ .(b) a portion of the  $Mo_3C$  substructure of the  $Ni_3Mo_3C$ .(c) the structure of the Ni, Mo and C substructures combined.



Fig. S7 The structure of the Ni<sub>3</sub>Mo<sub>3</sub>C phase(A) and Ni<sub>6</sub>Mo<sub>6</sub>C phase(B),(C).