## **Electronic Supplementary Information (ESI)**

## S-1 Protocols for synthesis of MFI<sub>2Al</sub> and MFI<sub>1Al</sub> zeolites.

For hydrothermal synthesis of the MFI<sub>1AI</sub> sample, Al(NO<sub>3</sub>)<sub>3</sub> in an amount of 1.63 g was added to 10 ml of distilled water and then 22.6 g TEOS (Aldrich 99) in 5 ml of ethanol was added and stirred for 90 min. In another beaker, 20.4 ml of 40 % TPAOH (Fluka, 20% TPAOH in water) was mixed with 60 ml of distilled water and stirred for 90 min. Then a resulting TPAOH solution and a mixture containing Al and Si were put together and stirred for further 90 min. In the case of synthesis of MFI<sub>2AI</sub> 0.098 g of metallic Al were at first added to the TPAOH solution (20.4 ml of 40 % TPAOH mixed with 60 ml of distilled water and 5 ml of ethanol) to enhance metal dissolution, and stirred for 90 min, then 6.5 g of Tixosil (Solvay) was added and stirred for further 90 min.



S-2 XRD patterns (A) and <sup>27</sup>Al MAS NMR spectra (B) of Na-MFI<sub>2Al</sub> and Na-MFI<sub>1Al</sub>.



**S-3** <sup>29</sup>Si MAS NMR spectrum of MFI<sub>2A1</sub>.



S-4 FTIR spectra of MFI<sub>2A1</sub> and MFI<sub>1A1</sub> dehydrated at 720 K in vacuum after interaction of 1.3 kPa CD<sub>3</sub>CN (30 min at RT and 30 min evacuation at RT), and spectra deconvolution. Extinction coefficients for C=N groups interacting with Brønsted (2 297 cm<sup>-1</sup>) sites,  $\varepsilon_B = 2.05$  cm µmol<sup>-1</sup>, and Lewis (2 325 cm<sup>-1</sup>) sites,  $\varepsilon_L = 3.62$  cm µmol<sup>-1</sup> (B. Wichterlová et al. Microporous Mesoporous Mater. 24 (1998) 223-233).

S-5 Vis band frequencies and absorption coefficients for  $\alpha$ -,  $\beta$ - and  $\gamma$ -Co(II) ions in MFI zeolites (J. Dedecek et al. Microporous Mesoporous Mater. 35-6 (2000) 483-494).

| Co(II) ions | Wavenumber<br>cm <sup>-1</sup>                                                               | Absorption coefficient<br>mmol.cm.g <sup>-1</sup> |
|-------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|
| α           | $15\ 100\pm 100$                                                                             | 3.7 ± 1.1                                         |
| β           | $\begin{array}{c} 16\ 000\pm150\\ 17\ 150\pm150\\ 18\ 600\pm100\\ 21\ 200\pm200 \end{array}$ | $2.7 \pm 0.7$                                     |
| γ           | $\begin{array}{c} 20  100 \pm 50 \\ 22  000 \pm 50 \end{array}$                              | $0.9 \pm 0.6$                                     |



S-6 Turnover rates of formation of propane and isobutane over MFI<sub>2A1</sub> (full symbols) and MFI<sub>1A</sub> (open symbols) depending on temperature.

## S-7 Apparent activation entropy and enthalpy

The apparent activation entropy  $(\Delta S_{app}^{\#})$  and apparent activation enthalpy  $(\Delta H_{app}^{\#})$  were calculated based on transition state theory (TST)

Assuming first order reaction and the reaction rate  $(r_{C3})$  expressed as turnover frequency (TOF), the Eyring-Polanyi equation can be expressed

$$r_{\rm C3} = \frac{k_{\rm b}T}{h} \exp\left\{\frac{\Delta S_{\rm app}^{\#}}{\rm R}\right\} \exp\left\{-\frac{\Delta H_{\rm app}^{\#}}{\rm RT}\right\} y_{\rm C3},$$

where  $y_{C3}$  is the propene molar fraction,  $k_b$  is Boltzmann constant, h is Planck constant.  $\Delta S_{app}^{\#}, \Delta H_{app}^{\#}$  were estimated by nonlinear regression procedure minimizing following function

$$S = \min \sum_{j} \left( \frac{X_{\text{C3},j}^{\text{calc}} - X_{\text{C3},j}^{\text{expt}}}{s(X_{\text{C3},j}^{\text{expt}})} \right),$$

where  $X_{C3,j}^{calc}$ ,  $X_{C3,j}^{expt}$  are calculated and experimental propene conversion, respectively, and  $s(X_{C3,j}^{expt})$  is the standard experimental uncertainty of the experimental propene conversion. The  $X_{C3,j}^{calc}$  was calculated by numerical solution of following differential equation describing the material balance inside the catalyst bed.

$$\frac{\mathrm{d}X_{\rm C3}}{\mathrm{d}n_{\rm A1}} = k \frac{p^{o}}{F_{\rm C3}^{0}} y_{\rm C3},$$

where  $n_{Al}$  is the molar amount of Al sites,  $p^o$  is the reaction pressure,  $F_{C3}^0$  is the propene molar feed rate.

The fit goodness was checked by chi-square test (*N. Balakrishnan, et al. in Chi-Squared Goodness of Fit Tests with Applications, Academic Press, 2013*). The results are depicted as follows:





**S-8** Development of *in situ* time-resolved FTIR spectra for MFI<sub>2A1</sub> at space-time 200 mol<sub>C3</sub>  $mol_{A1}^{-1}$  min<sup>-1</sup> at 523 K and 573 depending on TOS.



**S-9** Integrated intensities of aromatic carbenium ions  $(1607 \text{ cm}^{-1})$  for MFI<sub>2Al</sub> (full squares) and MFI<sub>1Al</sub> (empty squares) formed at propene reaction at space time 200 mol<sub>C3</sub> mol<sub>Al</sub><sup>-1</sup> min<sup>-1</sup> at 613 K in TOS (A) and estimated initial rates of formation of aromatic carbenium ions (B).



**S-10** Decrease of integrated intensities of saturated carbenium ions ( $3050-2700 \text{ cm}^{-1}$ ) for MFI<sub>2A1</sub> (full squares) and MFI<sub>1A1</sub> (empty squares) obtained when propene reaction at space time 200 mol<sub>C3</sub> mol<sub>A1</sub><sup>-1</sup> min<sup>-1</sup> at 613 K after 20 min of TOS was switched to a He stream kept for 20 min (A) and estimated initial rates of deprotonation of saturated carbenium ions (B).