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1. The synthesis of TNM

In a typical synthesis, 2 g of P25 powder was mixed with 12 mL of Milli-Q 

water (MQ) and 4 g of NaOH (final pH 13). Later on, the mixture was homogenized 

for 5 min under magnetic stirring and placed in a Teflon cell at 80°C for 24 h. After 

hydrothermal treatment, ion exchange (Na+ and H+) was conducted for 60 min by 

using 1 N HCl at the pH of 2 under magnetic stirring. Then the material was washed 

by Milli-Q water until pH 7. After that, the as-prepared samples were dried in oven at 

100°C for 12 h and annealed at 550°C for 6 h to obtain the original titanate 

nanomaterial (TNM).

2. Photoreactor

The photocatalytic degradation experiments were performed in a photochemical 

reactor as was shown in Fig. S1. It was equipped with a magnetic stirrer at a speed of 

300 rad/min to ensure adequate reaction. A 500 W metal halogen lamp was used as 

the light source which combined with a UV cut-off filter and an infrared ray (IR) cut-

off filter to remove wavelengths less than 400 nm and larger than 800 nm, 

respectively. A 250 mL sandwich beaker was used as the reactor, and the system was 

cooled by a circulating water bath to prevent the evaporation of water and maintained 

at room temperature. The distance between the lamp and the surface of solution was 

15 cm. The intensity of light was 162 klux measured by a digital luxmeter (Jiading, 

JD-3, China).

3. Cycling experiments



For the first cycle, 100 mL of 0.5 mg/L NPX solution was photocatalytic 

removed by 1.5 g/L of H2O2-modified titanate nanomaterials (HTNM) for 3 h under 

visible light irradiation. Later, after each cycle of the photocatalytic reaction, HTNM 

were separated and recycled from the solution by centrifugal collection, then washed 

thoroughly with deionized water to remove residual pollutants and dried in an oven at 

a temperature of 60℃, and the resulting nanocomposites were used in the succeeding.

4. The analysis of PL spectra of HTNM photocatalyst

In order to explore the defects exist in the HTNM photocatalyst and investigate 

the stability of HTNM from another side, PL spectra of the HTNM with/without 

usage excited by light with a wavelength of 362 nm were shown in Fig. S4. As shown 

in Fig. S4, a strong broad peak at 400–550 nm was observed for both HTNM samples, 

and multiple PL signals could be found in the visible region, which was mainly due to 

the excitonic emissions peaks of band edge free excitons and related to the traps on 

surface oxygen defects1, 2.

The emission peak at 412 nm could be attributed to the near band edge (NBE) 

transition3, 4. The occurrence of another defect related emission peak at 460 nm in 

case of HTNM was also reported by Jiang et al.1, and according to the previous 

studies, this emission (460 nm) was mainly attributed to excitonic PL emission which 

was due to surface states and defects5. In addition, the emission peak at 492 nm was 

also corresponding to intrinsic defects resulting from oxygen vacancies6. Furthermore, 

the emission peak observed around 514 nm could be assigned to vacancy-type defects 

such as oxygen vacancy and vacancy-combination defects1, 5, which could be easily 



annealed out with relatively high temperatures. This PL result further supported the 

XPS results analyzed in section 3.1.5, that is, the existence of oxygen defects in 

HTNM played an important role in the process of photocatalytic degradation.

Moreover, according to previous studies, oxygen vacancies could easily bind 

photo-induced electrons to form excitons so that PL signal could easily occur, and the 

content of oxygen vacancy defects were corresponding to the PL signals1, 7, 8. 

Therefore, as can be seen from Fig. S4, compared with the initial HTNM, the PL 

signals of the HTNM had not changed much after photocatalytic degradation process, 

demonstrating that after photocatalytic degradation process, most of oxygen vacancies 

still existed in the HTNM, and made HTNM exhibit the excellent photocatalytic 

activity.



SUPPORTING FIGURE CAPTIONS

Fig. S1. The schematic diagram of the experimental setup.

Fig. S2. (a) The XPS survey scans of HTNM photocatalyst; (b) and (c) The XPS 

patterns for the Ti 2p and O 1s core levels of HTNM photocatalyst before 

and after usage.

Fig. S3. The room-temperature photoluminescence spectra of HTNM photocatalyst 

before and after usage.

Fig. S4. HPLC mass spectrogram of NPX transformation samples.

Fig. S5. The mineralization of NPX during HTNM photocatalytic degradation process.



Figure S1

Fig. S1. The schematic diagram of the experimental setup.



Figure S2
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Fig. S2. (a) The XPS survey scans of HTNM photocatalyst; (b) and (c) The XPS 

patterns for the Ti 2p and O 1s core levels of HTNM photocatalyst before 

and after usage.



Figure S3
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Fig. S3. The room-temperature photoluminescence spectra of HTNM photocatalyst 

before and after usage.



Figure S4
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Fig. S4. HPLC mass spectrogram of NPX transformation samples.



Figure S5
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Fig. S5. The mineralization of NPX during HTNM photocatalytic degradation process.



TABLES

Table S1 Lattice parameters of TNM and HTNM photocatalysts

Photocatalyst Peak position (2θ) FWHM Crystal size (nm) a (Å) c (Å)
TNM 25.308 0.3683 20.79 3.784 9.515

HTNM 25.334 0.3732 20.51 3.780 9.510

Table S2 Degradation kinetics of NPX under different conditions

Factors Conditions R2
kapp 

(×10-3 min-1)

NPX initial concentration 0.1 0.99024 34.8 ± 0.2474

(mg L-1) 0.5 0.98032 43.9 ± 0.4363
1.2 0.99471 17.4 ± 0.0855
2 0.99132 8.2 ± 0.0536

HTNM (g L-1) 0.5 0.98325 33.9 ± 0.4368
1.5 0.98028 43.9 ± 0.3484
2.5 0.97901 13.6 ± 0.1846
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