Electronic Supplementary Material (ESI)

A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from phosphonate-based-MOF as an efficient electrocatalyst for water oxidation

Zhao-Qian Huang, Wen-Xiu Lu, Bin Wang, Wei-Jun Chen, Jie-Ling Xie, Dong-

Sheng Pan, Ling-Li Zhou and Jun-Ling Song*

Catalyst	Substrate	Electrolyte	Overpotential at	Tafel	Reference
			10/-10 mA/cm ²	slope	
			(mV vs.RHE)	(mV	
				dec ⁻¹)	
CoNi-P-3DHFLMs	GC	1 М КОН	292	84	Applied Catalysis B: Environmental 2019 249 147
Co ₃ O ₄ /MoS ₂	NF	1 М КОН	230 (<i>j</i> =20 mA/cm ²)	94	Applied Catalysis B: Environmental 2019 , 248, 202
			205	128	
FeNi@N-CNT	GC	1 М КОН	300	47.7	<i>ACS Appl. Mater. Interfaces</i> 2016 , <i>8</i> , 35390
S-CoWP@(S,N)-C	GC	1 M KOH	420	68	ACS Energy Lett. 2018, 3, 1434
			-67	35	
(Co,Ni)Se ₂ @NiFe LDH	GC	0.1 M KOH	277	75	ACS Appl. Mater. Interfaces 2019, 11, 8106
Ni ₂ P-CoP	GC	0.1 M KOH	320	69	ACS Appl. Mater. Interfaces 2017.
		0.5 M H ₂ SO ₄	105	64	9. 23222
Co-N-C NN-800	GC	0.1 M KOH	470	191	ACS Appl. Energy Mater. 2018, 1, 1060
(Nio coFeo 28) pP	GC	1 М КОН	290	44	Catal Sci Technol 2017 7 1549
$CeO_{\nu}/CoS@L-CeO_{\nu}NRs$	GC	1 M KOH	238	42	J Mater Chem A 2019 7 8284
$C_{0_2}O_4/C_0M_0O_4-50$	GC	1 M KOH	318	63	J. Mater. Chem. A. 2018 , 6, 1639
Mn-CoP	GC	1 M KOH	356	76	Dalton Trans 2018 47 14679
	00	1 М КОН	195	, e 85	Dunon 11 ano., 2010 , <i>1</i> 7, 11075
FeCo-P/C	GC	1 М КОН	362	50.1	Small Methods 2018 2 1800214
NGO/Ni ₇ Se	GC	0 1 M KOH	380	45	Adv Funct Mater 2017 27
1100/11/00		0.1 10 10011	370	145 5	1700451
CooS.@TDC-900	GC	1 М КОН	330	86	J. Mater. Chem. A. 2019 , 7, 7389
Fe ₃ C@NCNT/NPC	GC	1 M KOH	369	62	Catal. Sci. Technol. 2016. 6. 6365
C02O4@C-MWCNTs	GC	1 M KOH	320	62	J. Mater. Chem. A. 2015 , 3, 17392
C_0/C_0S_0 NSOC-800	GC	1 M KOH	373	80	Chem Commun. 2019 55 3203
2			216	/	
C0 ₃ O ₄ @Co/NCNT	GC	0.1 M KOH	380	58.7	Chem. Eur. J. 2017 , 23, 18049
ZnCoNC-0.1	GC	0.1 M KOH	520	129	Nano Res. 2018, 11(1): 163
Co ₉ S ₈ @CT-800	GC	0.1 M KOH	390	72	J. Mater. Chem. A, 2018 , 6, 5935

Table S1 Comparison of the OER catalytic performance of the other recently reported

MOFs derived electrocatalysts supported on glass carbon in different media.

Co ₄ Ni ₁ P NTs	GC	1 M KOH	245	61	Adv. Funct. Mater. 2017, 27,	
			129	52	1703455	
Co/Ni@C	GC	0.1 M KOH	440	93	ACS Appl. Energy Mater. 2019, 2, 1854	
CoP ₃ CPs/CFP	GC	1 M KOH	343	76	Phys. Chem. Chem. Phys., 2017, 19,	
		$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	-78	53	2104	
Co ₉ S ₈ /NSCNFs-850	GC	1 M KOH	302	54	Small 2018, 14, 1704035	
CoO _x -MoC/NC-2	GC	1 M KOH	330	89	Small 2017, 13, 1702753	
H3LCoCN800	GC	1 M KOH	267	64	ACS Catal. 2017, 7, 6000	
	NF		215	61		
ZIF-8-C6	GC	0.1 M KOH	476	78.5	Mater. Chem. Front., 2018, 2, 102	
		$0.5 \text{ M} \text{H}_2 \text{SO}_4$	155	54.7		
porous Ni ₂ P	GC	1 M KOH	320	165	J. Mater. Chem. A, 2018, 6, 18720	
			168	63		
Co ₂ P/Mo ₂ C/Mo ₃ Co ₃ C@C	GC	1 М КОН	362	82	J. Mater. Chem. A, 2018, 6, 5789	
			182	68		
(Ni,Co)Se ₂	GC	1 M KOH	256	74	Nanoscale, 2019, 11, 6401	
Ni@NC-800	GC	1 M KOH	280	45	Adv. Mater. 2017, 29, 1605957	
			205	160		
Co-NC/CNT	GC	1 M KOH	354	78	J. Mater. Chem. A, 2016, 4, 16057	
			203	125		
14.6 % CeO _x /CoS	GC	1 М КОН	269	50	Angew. Chem. Int. Ed. 2018, 57, 8654	
CoSe ₂ -450	GC	1 M KOH	330	79	J. Mater. Chem. A, 2017 , 5, 15310	
C-MOF-C2-900	GC	0.1 M KOH	350	79	Adv. Mater. 2018, 30, 1705431	
Py-1@SNC600	GC	1 M KOH	284.7	56	Small 2019, 15, 1900348	
Co-CNT/PC	GC	0.1 M KOH	315	73.8	Chem. Commun., 2016 , 52, 9727	
CoSe ₂ /CFC	GC	1 M KOH	356	88	ACS Appl. Mater. Interfaces 2016, 8, 26902	
CoNC-CNF-1000	GC	0.1 M KOH	450	94	Small 2018, 14, 1800423	
NiCoS/Ti ₃ C ₂ T _x	GC	1 M KOH	365	58.2	ACS Appl. Mater. Interfaces 2018,	
5 2 A					10. 22311	
FeNi@NCNT	GC	1 M KOH	300	48	ACS Appl Mater Interfaces, 2016,	
Ŭ					8: 35390	
2D Co ₃ O ₄ /CBDC	GC	1 M KOH	208	50	ACS Energy Lett, 2018, 3: 1655	
СоМо-Н	GC	1 M KOH	312	69	Adv Funct Mater. 2017. 27:	
					1702324	
NF@NC-CoFe ₂ O ₄ /C	GC	1 M KOH	240	45	Adv Mater, 2017, 29: 1604437	
NRAs						
CoSe ₂ -450	GC	1 M KOH	330	79	J Mater Chem A, 2017 . 5: 15310	
CoTe ₂ @NCNTFs	GC	1 M KOH	330	83	J Mater Chem A, 2018 , 6: 3684	
CoP/rGO-400	GC	1 M KOH	340	66	Chem Sci. 2016 7. 1690	
NiCoP/C nanoboxes	GC	1 M KOH	330	96	Angew Chem Int Ed. 2017. 56: 3897	
MCOI/C HallOUXES	UC		550	90	лиден Спет Ini Eu, 2011, 30. 369/	

Experimental Section

Calculation Method: Details concerning the calculation of the Faraday efficiency for OER are shown below.

The turnover frequency (TOF) of the catalyst for OER is defined as

$$TOF = nO_2/n_{cat}/t$$
(S1)

where n_{0_2} is the amount of oxygen (mol) produced, n_{cat} is the amount of catalytic active centers in the catalyst (mol) and *t* is the electrolysis time (s).

When the electrolysis current is all used for OER,

$$TOF_{theoretical} = J/(4 \times F \times m/M)$$
(S2)

Where *J* is the current density (mA cm⁻²) at a given overpotential, *F* is the faraday constant (96485 C mol⁻¹), *m* is the mass loading of the catalyst (mg cm⁻²), and M is the molecular weight of the catalyst unified with one active center per formula unit. The Faraday efficiency for OER is calculated by

$$F_{\text{OER}} = \text{TOF} / \text{TOF}_{\text{theoretical}} \times 100\%$$
(S3)

	0 min	10 min	20 min	40 min	60 min
O ₂	2968.935	3065.909	3162.846	3357.463	3542.295
N ₂	13109.658	12895.355	12352.472	11948.066	11096.842

The obtained gas chromatography peak areas of O₂ and N₂ in the electrolytic cell are:

Giving $n_{0_2} = O_2$ concentration (%) × head space volume / (22.4 × 298 / 273) = 573.36 / 13415.4 × 50 / 1000 / 24.45 mol = 8.74 × 10⁻⁵ mol. Because n_{cat} = mass loading (mg) / molecular weight / 1000 = 3 × 0.03 / 451.67 / 1000 = 1.99 × 10⁻⁷ mol, TOF = 8.74 × 10⁻⁵ / 1.99 × 10⁻⁷ / 3600 = 0.122 s⁻¹.

Considering all Co ions in Co-bipy-900 (451.67 g mol⁻¹) as catalytic centers, M = 451.67/3 = 150.56 g mol⁻¹. TOF theoretical = 10.0 / (4 × 96485 × 0.03 / 150.56) = 0.13 s⁻¹ for Co-bipy-900 @GC at 10.0 mA cm⁻².

 $F_{\text{OER}} = 0.122 \text{ s}^{-1} / 0.13 \text{ s}^{-1} \times 100 \% = 93.8 \%$

Figure S1. TG curves of Co-Pi-bipy.

Figure S2. (a)XRD of different product at different TG curves of Co-Pi-bipy, denoted as Co-Pi-T (T= 120, 200, 300, 500, 600, 700, 800°C), Co-Pi-bipy and Co-Pi-900 is C,N co-doped Co-Pi-900), (b) XRD of Co-Pi-800, (c) EDX of Co-Pi-900.

Notes: According to TGA result as shown Figure S1, we can obtain the experimental total weight loss is 57.84% and 64.54% at 900 and 1000°C, respectively, if the final product is a mixture of $Co(PO_3)_2$ and $Co_2P_2O_7$ in a 1:1 molar ratio based on the composition in this MOF precursor, $Co_3(H_2L)_2(H_2O)_4(bipy)_2 \cdot 11H_2O$, the calculated

total weight loss is 60.24%, if the final product is 3.0 mmol Co(PO₃)₂, the calculated total weight loss is 49.15%, while the final product is 1.5 mmol $Co_2P_2O_7$, the calculated total weight loss is 65.79%, thus, the experimental total weight loss is closer to that of a mixture of $Co(PO_3)_2$ and $Co_2P_2O_7$. In addition, we also carried out XRD for the calcined sample at different temperature (Figure S2), it can be seen that the new diffraction peaks appear when the sample was heated to 700 °C, the two diffraction peaks at 29.9° and 31.0° could be ascribed to the (222) and (402) plane of Co(PO₃)₂ and Co₂P₂O₇, respectively, as shown in Figure S2b, again suggesting the formation of a mixture of Co(PO₃)₂ and Co₂P₂O₇. Further, we have measured EDX to investigate the composition of the calcined material (Figure S2c). The EDX analysis of the Co-Pi-900 gave an molar ratio of Co/P/O of ~1.0:1.01:3.34, which is close to that calculated value of a mixture of Co(PO₃)₂ and Co₂P₂O₇ in a 1:1 molar ratio, and ICP analysis gave Co and P content of 41.16 wt% and 22.98 wt%, respectively, in agreement with EDX results, confirming the elemental composition for the Co-Pi-900. These results indicated that the ccalcined product at 900 °C might be mainly the mixture of $Co(PO_3)_2$ and $Co_2P_2O_7$. We also carried out elemental analysis to find out the percentage of doped carbon and nitrogen for the sample Co-Pi-900, the results indicated that the N and C content of the final product is 0.50%, 7.01%, respectively, confirming the Co-Pi-900 catalyst was a C,N-co incorporated cobalt-based phosphate.

Figure S3. Raman spectrum of compounds Co-Pi-900.

Figure S4. SEM images of Co-Pi-bipy.

Figure S5. N_2 adsorption (solid) and desorption (open) isotherms (a) and BJH size

distribution (b) of C,N co-doped Co-Pi-900, at 77.42 K.

Figure S6. (a) LSV curves of Co-Pi-T (T= 120, 200, 300, 500, 600, 700, 800°C), Co-Pi-bipy and C,N co-doped Co-Pi-900 or Co-Pi-900) at a scan rate of 5 mV/s for the OER, (b) Comparison of the OER overpotential at a current density of 10 mA/cm² for Co-Pi-bipy-T catalysts, the error bar represents the range of results from three independent measurements.

Figure S7. Cyclic voltammograms of (a) Co-Pi-bpy, (b) Co-Pi-900 (C,N co-doped Co-Pi-900) and (c) IrO₂ at different scan rates from 2 to 10 mV s⁻¹.

Figure S8. A linear relationship between seven calibrated O_2 concentrations and their gas chromatography peak areas was obtained (a) and the amount of O_2 theoretically calculated and experimentally measured versus time for the OER of Co-Pi-900 (C,N co-doped Co-Pi-900).

Figure S9. Durability test for the Co-Pi-900 (C,N co-doped Co-Pi-900) sample at 1.56 V (vs. RHE) for 8 hrs.

Figure S10. (a)XPS spectrum of Co-Pi-900 (C,N co-doped Co-Pi-900) after OER test in 1.0M KOH, (b) Co 2p, (c) P 2p and (d) O 1s.

Figure S11. (a) TEM and (b) SEM of Co-Pi-900 (C,N co-doped Co-Pi-900) after OER test in 1.0M, pores and nanosheets are designated as yellow and red circles, respectively.

Figure S12. (a) EDX, (b) XRD and (c) FTIR of Co-Pi-900 (C,N co-doped Co-Pi-900) after OER test in 1.0 M KOH.

Notes: The post-catalytic sample after OER test was studied to investigate the surface composition of the catalyst (Figure S10-S12). XPS analysis confirms the existence of Co, P, O, N and C on the surface of the post-catalyst after OER test, in addition, the relative intensity of the O1s peak increases, while, the relative intensity of N1s and P1s decrease, indicating the partial transformation from metal phosphate to hydrated oxides or oxyhydroxides. The Co 2p binding energy for Co ions almost no shifts, and a slight shift to lower binding energy for O 1s is observed, while the P1s showed a slight shift to higher binding energy, which might be attributed to the formation of hydrated oxides or oxyhydroxides in the surface of amorphous post-catalyst after the

OER test. Pores also could be clearly observed in TEM micrographs of the sample (light areas marked as res circles on Figure S11a). The SEM of the post-catalytic sample after OER test (Figure S11b) shows that the sample displayed slight aggregation compared with that of pristine catalyst, in addition, the nanosheets after OER test are slightly rougher than that of the catalyst before OER test. The FTIR spectra of Co-Pi-900 and Co-Pi-900 after OER test were shown in Figure S11c. The characteristic peak at 1050 cm⁻¹ for both samples corresponds to characteristic vibration of phosphate groups. The new broad vibration peak at 3322 cm⁻¹ and 2879 cm⁻¹ indicate the appearance of adsorbed OH⁻ groups in the post-catalyst. EDX analysis (Figure S12a) exhibits the regular distribution of Co, P, O, N and C, notably, only small amount of N and C the surface of the catalyst, and compared with EDX of the pristine sample, the molar ratio of Co/P/O of the post-catalytic sample is 1.0:0.85:1.12, indicating the partial loss of P atoms, in accordance with XPS and FTIR results. The XRD pattern after OER test shows still no diffraction peaks, suggesting it was still amorphous structure. Combining these results, the electrocatalyst after OER test has been partially transformed into hydrated oxides or oxyhydroxides in 1.0 KOH, the active material on the surface of Co-Pi-900 possibly was mainly the mixture of cobalt hydroxide and cobalt phosphate.

Figure S13. (a) XRD, (b) FTIR of Co-Pi-900 and Co-Pi-900 (C,N co-doped Co-Pi-900) soaking for 12hrs.

Figure S14. (a) HER polarization curve of Co-Pi-900 (C,N co-doped Co-Pi-900), sweep rate: 5 mV s⁻¹ in 1 M KOH. Pt/C, Co-Pi-bpy are also added for comparison. (b) Corresponding Tafel plots of the samples shown in (a). (c) Durability test for the Co-Pi-900 (C,N co-doped Co-Pi-900) sample. Pt/C (commercial Pt/C, 5% Pt) was compared as a reference.

Figure S15. Cyclic voltammograms of (a) Co-Pi-900 (C,N co-doped Co-Pi-900), (b) Co-Pi-bpy, (c) IrO_2 at different scan rates from 2 to 10 mV s⁻¹. (d) Plots of the current density at 0.57 V vs. the scan rate for different catalyst. All experiments were carried out in 1.0 M KOH.

Figure S16. (a) Polarization curve for overall water splitting with the Co-Pi-900 (C,N co-doped Co-Pi-900) electrode as both the anode and cathode.