Supporting Information for

The effect of ZnO on acid-base properties and catalytic performance of ZnO/ZrO_2 -SiO₂ catalysts in 1,3-butadiene production from ethanol-water mixture

Olga V. Larina,^a Pavlo I. Kyriienko,^{*a}, Dmytro Yu. Balakin,^b Mykhailo Vorokhta,^c Ivan Khalakhan,^c Yurii M. Nychiporuk,^d Vladimír Matolín,^c Sergiy O. Soloviev^a and Svitlana M. Orlyk^a

^aL.V.Pisarzhevsky Institute of Physical Chemistry of the NAS of Ukraine, 31 Prosp. Nauky, 03028 Kyiv, Ukraine

^bInstitute of Physics of the NAS of Ukraine, 46 Prosp. Nauky, 03028 Kyiv, Ukraine

^cCharles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague, Czech Republic

^dInstitute of Surface Chemistry of the NAS of Ukraine, 17 General Naumov Street, 03164 Kyiv, Ukraine

Table of Contents

Experimental Section	S3
1. The acid-base properties measurements	\$3
2. Catalytic properties measurements and calculations	S4
Figure S1	S 5
Figure S2	S 5
Figure S3	S6
Figure S4	S10
Figure S5	S10
Figure S6	S11
Figure S7	S11
Figure S8	S12
Figure S9	S13
Figure S10	S14
Figure S11	S15
Figure S12	S16
Table S1	S17
Table S2	S17
Table S3	S17
Table S4	S18
Table S5	S18
Table S6	S19
Table S7	S19
References	S20

Experimental Section

1. Acid-base properties measurements

Desorption of NH₃ and CO₂ from the samples were studied by one-pass temperature-programmed desorption (TPD) with mass-spectrometry control (a chamber pressure of 10-7 Pa, a sample weight of 20 mg, a heating rate of 0.5 K/sec, a short distance (0.5 cm) between the sample and a MS detector). Time-of-flight mass-spectrometer MSX-3PC (Electron, Ukraine) with sensitivity 2.2×10^{-5} A Torr⁻¹ (an accelerating voltage of 0.5 kV, a pulse frequency of 3 kHz) was used. Application of this TPD-technique was described in detail in the ref.¹

Before adsorption of NH_3 and CO_2 , the samples were heated in a constant Ar flow (30 ml/min) at 773 K for 2 hours, then cooled in the Ar flow to room temperature. Adsorption of NH_3 and CO_2 was carried out using a gaseous solution of NH_3 and CO_2 in Ar (at flow rate of 30 ml/min) for 1 hour.

Analysis of acid-base properties of ZnO/ZrO_2 -SiO₂ catalysts samples was also performed by adsorption of pyridine and deuterated chloroform (CDCl₃) followed by infrared spectroscopy. Fourier Transform Infrared (FTIR) measurements were performed on a Spectrum One FTIR spectrometer (Perkin Elmer, USA). Typically, 24 scans with a resolution of 1 cm⁻¹ were codded to give one spectrum. The catalyst sample was pressed at ~ 2 ton cm⁻² into thin wafers of ca. 12 mg cm⁻² and placed inside the IR cell.

Before adsorption of pyridine, the cell was connected to a vacuum-adsorption apparatus allowing a residual pressure below 10^{-3} Pa. The samples were outgassed (10^{-3} Pa) at 693 K for 1 h. Then, pyridine was adsorbed at 423 K for 15 minutes. The spectra were recorded under ambient conditions after pyridine desorption at 423 K and 523 K.

Before adsorption of CDCl₃, the catalyst-containing IR cell was heated in a constant Ar flow (~60 mL⁻min⁻¹). Once 773 K was reached, the treatment lasted 1 h. Then, the sample was cooled to 373 K, and a baseline was recorded. To carry the probe molecule to the IR cell, Ar was sent through the CDCl₃-containing gas bubbler for 30 min. After that, the mixture passed through the IR cell for 30 min to avoid physical adsorption of CDCl₃, and the spectra of adsorbed CDCl₃ were recorded. All measured spectra were recalculated to a "normalized" wafer weight.

S3

2. Catalytic properties measurements and calculations

Catalytic activity tests were carried out in a fixed-bed flow quartz reactor with inner diameter of 4 mm at 598-673 K and atmospheric pressure. Samples with grains of 0.25–0.5 mm were loaded into the reactor. Ethanol-water mixture feed (96% EtOH – 4% H₂O; 80% EtOH – 20% H₂O; 50% EtOH – 50% H₂O) was introduced to the evaporator via a syringe infusion pump and the argon with flow of 7 mL⁻min⁻¹ carried the feed into the reactor. Reaction was carried out at WHSV of 0.65–2.6 g_{EtOH}·g_{cat}⁻ ¹·h⁻¹. Before the reaction, the catalysts were annealed at 773 K under flowing argon for 1 h. The reagents and reaction products were analyzed on a gas chromatograph (KristalLyuks 4000M, MetaChrome) equipped with a TCD detector and a packed column (10 % NiSO₄ on coal, 3 m × 3 mm) for CO and CO₂, and a FID detector and a capillary column (HP-FFAP, 50 m × 0.32 mm) for organic compounds.

Catalytic properties of the catalysts were characterized by EtOH conversion (X), selectivity to products (S_i), BD yield (Y_{BD}), BD productivity (P_{BD}) and initial reaction rate of BD formation (r_{BD}). These indices were calculated using following formulas:

$$X = \frac{n_{EtOH}^{0} - n_{EtOH}}{n_{EtOH}^{0} \cdot 100\%},$$

$$S_{i} = \frac{n_{i}}{(n_{EtOH}^{0} - n_{EtOH})} \cdot 100\%,$$

$$Y_{i} = \frac{X \cdot S_{i}}{100\%},$$

$$P_{i} = \frac{Y_{i} \cdot WHSV \cdot k}{100\%},$$

$$r_{BD} = \frac{Y_{BD}^{15} \cdot WHSV \cdot k}{54 \cdot 100\%} * 10^{3},$$

where $\mathbf{n}^{0}_{\text{EtOH}}$ is the initial amount of C moles of EtOH; \mathbf{n}_{EtOH} and \mathbf{n}_{i} are the amount of C moles of unreacted EtOH and product **i** in the stream of the reaction products, respectively; **k** is the maximum possible amount of the same product (g) that can be produced from 1 g of EtOH, for BD **k**=0.587. Y_{BD}^{15} – BD yield calculated at 15 % EtOH conversion.

Fig. S1. XRD patterns of zinc oxide samples: 1 – ZnO-I, 2 – ZnO-N, 3 – ZnO-M, 4 – ZnO-C.

Fig. S2. FESEM images of the samples: $1 - ZnO-I/ZrO_2-SiO_2$, $2 - ZnO-N/ZrO_2-SiO_2$, $3 - ZnO-M/ZrO_2-SiO_2$, $3 - ZnO-M/ZrO_2-SiO_2$, $3 - ZnO-M/ZrO_2-SiO_2$.

Fig. S3-A. EDX mapping for Si, Zr and Zn atoms of $ZnO-I/ZrO_2-SiO_2$ sample.

Figure S3-B. EDX mapping for Si, Zr and Zn atoms of $ZnO-N/ZrO_2-SiO_2$ sample.

Figure S3-C. EDX mapping for Si, Zr and Zn atoms of $ZnO-M/ZrO_2-SiO_2$ sample.

Figure S3-D. EDX mapping for Si, Zr and Zn atoms of ZnO-C/ZrO₂-SiO₂ sample.

Fig. S4. Deconvoluted FTIR spectra of adsorbed pyridine on as-prepared catalyst samples after desorption at 423 K (A) and 523 K (B): $1 - ZrO_2-SiO_2$, $2 - ZnO-I/ZrO_2-SiO_2$, $3 - ZnO-N/ZrO_2-SiO_2$, $4 - ZnO-M/ZrO_2-SiO_2$, $5 - ZnO-C/ZrO_2-SiO_2$.

Fig. S5. In situ FTIR spectra of adsorbed CDCl₃ over the catalysts: $1 - ZrO_2 - SiO_2$, $2 - ZnO - I/ZrO_2 - SiO_2$, $3 - ZnO - N/ZrO_2 - SiO_2$, $4 - ZnO - M/ZrO_2 - SiO_2$, $5 - ZnO - C/ZrO_2 - SiO_2$.

Fig. S6. Temperature dependencies of the catalysts productivities to 1,3-butadiene (A) and butene (B) and their formation rates (insert) in ETB process: 1 - ZrO2-SiO2, 2 - ZnO-I/ZrO2-SiO2, 3 - ZnO-N/ZrO2-SiO2, 4 - ZnO-M/ZrO2-SiO2, 5 - ZnO-C/ZrO2-SiO2 (WHSV = 1.3 gEtOH·gcat-1·h-1, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source).

Fig. S7. BD and ethylene+DEE yields over ZnO/ZrO_2 -SiO₂ catalysts as a function of time-on-stream (WHSV = 1.3 g_{EtOH}·g_{cat}⁻¹·h⁻¹, T = 648 K).

Fig. S8. Zn $2p_{3/2}$ NAP-XPS spectra of zinc oxide samples under O₂ (a) and EtOH+H₂O (b) flows: 1 – ZnO-I, 2 – ZnO-N, 3 – ZnO-M, 4 – ZnO-C.

Fig. S9. The interrelationship between acid/base capacity ratios for the zinc oxide samples calculated according to NH_3/CO_2 -TPD data (marked as ABCR-TPD) and the data of O 1s NAP-XPS spectra under O₂ flow (marked as ABCR-XPS).

ABCR-TPD values were obtained by dividing the area under curve of NH_3 -TPD by the area under curve of CO_2 -TPD presented in Fig. 2, main text of the manuscript. *ABCR-XPS values* were obtained by dividing the area under curve of the peak at 532.6 eV by the area under curve of the peak at 531.6 eV presented in Fig. 8, main text of the manuscript.

Fig. S10. The interrelationship between unit fraction of surface oxygen including oxygen corresponding to acidic sites (marked as FOA) and unit fraction of surface oxygen including oxygen corresponding to chemosorbed ethoxy/carboxy species (marked as FOE).

The unit fraction of surface oxygen including oxygen corresponding to acidic sites (marked as FOA) was calculated from O 1s NAP-XPS data for zinc oxide samples under O_2 flow using following formula:

$$FOA = \frac{\text{area of O1s NAP-XPS peak at 532.6 eV}}{\text{area of O1s NAP-XPS peak at 531.6 eV} + \text{area of O1s NAP-XPS peak at 531.6 eV}} \cdot (u.f.)$$

The unit fraction of surface oxygen including oxygen corresponding to chemosorbed ethoxy/carboxy species (marked as FOE) was calculated from O 1s NAP-XPS data for zinc oxide samples under EtOH+H₂O flow using following formula:

 $FOE = \frac{\text{area of O1s NAP-XPS peak at 532.6 eV}}{\text{area of O1s NAP-XPS peak at 531.6 eV} + \text{area of O1s NAP-XPS peak at 531.6 eV}} \cdot (u.f.)$

Fig. S11. BD selectivity of ETB process over ZnO/ZrO_2 -SiO₂ at \Box 50% ethanol conversion as functions of FOA (unit fraction of surface oxygen including oxygen corresponding to acidic sites, calculated from O 1s NAP-XPS data for zinc oxide samples under O₂ flow, A) and FOE (unit fraction of surface oxygen including oxygen corresponding to chemosorbed ethoxy/carboxy species, calculated from O 1s NAP-XPS data for zinc oxide samples under EtOH+H₂O flow, B).

Fig. S12. QMS spectra of the reaction mixture over $ZnO-SiO_2$ (1:1) during the XPS measurements in the EtOH and AA flow.

Temperature	EtOH con-			Product s	BD yield	BD productivity,				
(К)	version (%)	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD} \cdot g_{cat}^{-1} \cdot h^{-1}$
							acetate			
598	8.5	5.3	6.4	54.8	31.9	0.1	0.1	1.4	0.4	0.003
623	23.4	6.8	4.0	66.8	21.1	0.3	0.1	0.9	1.6	0.012
648	51.2	12.3	3.0	69.7	13.2	1.2	0.1	1.7	6.3	0.048
673	85.7	16.8	2.1	69.9	8.2	2.5	0.0	0.5	14.4	0.110

Table S1. Catalytic performance of ZrO₂-SiO₂ compositions in EtOH conversion^a

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -1·h-1, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source.

Table S2. Catalytic performance of ZnO-I/ZrO₂-SiO₂ compositions in EtOH conversion^a

Temperature	EtOH con-			Product se	electivi	ty (C mol%	BD yield	BD productivity,		
(К)	version (%)	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{\text{BD}} \cdot g_{\text{cat}}^{-1} \cdot h^{-1}$
							acetate			
598	14.9	45.4	19.7	23.0	9.8	1.4	0.6	0.1	6.8	0.052
623	34.2	55.6	12.6	22.8	5.4	2.6	0.5	0.5	19.0	0.145
648	49.0	55.7	12.9	23.3	3.6	3.2	0.6	0.7	27.3	0.208
673	70.7	56.4	11.2	24.8	2.0	4.0	0.4	1.2	39.9	0.304

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -1·h-1, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source.

Table S3. Catalytic performant	ce of ZnO-N/ZrO ₂ -SiO ₂	compositions in EtOH conversion ^a
--------------------------------	--	--

Temperature	EtOH con			Product se	electivi	ty (C mol%	BD yield	BD productivity,		
(К)	version	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD}^*g_{cat}^{-1*}h^{-1}$
	(%)						acetate			
598	18.3	50.3	13.7	22.8	10.6	2.0	0.4	0.2	9.2	0.070
623	42.6	57.0	8.9	24.0	6.1	2.9	0.4	0.7	24.3	0.185
648	72.9	60.0	9.5	22.1	3.2	3.7	0.5	1.1	43.6	0.333
673	88.0	59.5	9.2	22.9	1.8	4.7	0.3	1.6	52.4	0.400

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -¹·h-¹, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source.

Temperature	EtOH con			Product s	electivi	ty (C mol%	6)	BD yield	BD productivity,	
(K)	version	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD} \cdot g_{cat}^{-1} \cdot h^{-1}$
	(%)						acetate			
598	14.6	43.6	13.7	28.2	12.5	1.4	0.3	0.3	6.4	0.049
623	31.1	47.6	11.9	28.4	8.6	2.4	0.7	0.4	15.8	0.121
648	67.9	55.8	6.8	28.8	4.1	3.6	0.3	0.6	37.9	0.289
673	85.5	55.7	7.7	28.7	2.2	4.4	0.2	1.1	47.6	0.363

Table S4. Catalytic performance of ZnO-M/ZrO₂-SiO₂ compositions in EtOH conversion^a

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -¹·h-¹, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source.

 Table S5. Catalytic performance of ZnO-C/ZrO2-SiO2 compositions in EtOH conversion^a

Temperature	EtOH con			Product se	electivi	ty (C mol%	BD yield	BD productivity,		
(К)	version	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD} \cdot g_{cat}^{-1} \cdot h^{-1}$
	(%)						acetate			
598	18.1	58.0	14.6	15.9	7.5	2.0	0.9	1.1	10.5	0.080
623	32.5	59.3	11.2	20.1	6.1	2.6	0.6	0.1	19.2	0.147
648	64.3	59.0	9.0	23.5	3.5	3.7	0.4	0.1	38.0	0.290
673	79.4	56.1	9.4	26.2	2.3	4.6	0.4	1.0	44.6	0.340

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -1·h-1, time-on-stream = 2-5 h, 80% EtOH in water as an ethanol source.

Table S6. Catalytic performance of ZnO-N/ZrO₂-SiO₂ compositions in EtOH conversion^a

Temperature	EtOH con			Product s	BD yield	BD productivity,				
(К)	version (%)	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD} \cdot g_{cat}^{-1} \cdot h^{-1}$
							acetate			
648	76.1	59.2	7.8	23.0	3.9	4.5	0.3	1,3	45.0	0.343
673	97.1	60.1	5.3	24.9	2.0	6.0	0.2	1,5	58.3	0.445

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -1·h-1, time-on-stream = 2-5 h, 96% EtOH in water as an ethanol source.

Table S7. Catalytic performance of ZnO-N/ZrO₂-SiO₂ compositions in EtOH conversion^a

Temperature	EtOH con			Product se	BD yield	BD productivity,				
(К)	version	BD	AA	ethylene	DEE	butenes	ethyl	others	(C mol%)	$g_{BD} \cdot g_{cat}^{-1} \cdot h^{-1}$
	(%)						acetate			
648	38.4	44.1	19.6	29.5	3.6	2.0	0.5	0.7	16.9	0.129
673	59.1	47.4	14.6	31.8	1.9	2.7	0.5	0.8	28.0	0.214

^{*a*} WHSV = 1.3 g_{EtOH} · g_{cat} -1·h-1, time-on-stream = 2-5 h, 50% EtOH in water as an ethanol source.

References

V. M. Gun'ko, V. I. Zarko, B. A. Chuikov, V. V. Dudnik, Y. G. Ptushinskii, E. F. Voronin, E. M. Pakhlov and A. A.
 Chuiko, Temperature-programmed desorption of water from fumed silica, titania, silica/titania, and
 silica/alumina, *Int. J. Mass Spectrom. Ion Process.*, 1998, **172**, 161–179.