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3. Simulations of powder XRD pattern of MTT/TON faulted structures (Figure S 8)

4. Residual electron density (Figures S 9-11)

5. Atomic coordinates of the refined MTT structure (Table S 1)

6. Crystal length distribution (Figure S 12)
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13)
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Figure S 1. Rietveld refinement of DIQUAT ZSM-23 zeolite using the model with Pmn21 symmetry.

Figure S 2. Rietveld refinement of PYRR ZSM-23 zeolite using the model with Pmn21 symmetry.
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Figure S 3. Rietveld refinement of HTMPD ZSM-23 zeolite using the model with Pmn21 symmetry.

Figure S 4. Rietveld refinement of IPA ZSM-23 zeolite using the model with Pmn21 symmetry.
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Figure S 5. Rietveld refinement of DMF ZSM-23 zeolite using the model with Pmn21 symmetry.
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Figure S 6. The MTT (ZSM-23) structure can be generated by stacking alternating A-layers (indicated in 
green) and B-layers (indicated in red, atomic coordinates are given in the DIFFaX input file). To 
generate the MTT structure a -0.56 shift in the a-direction is needed, this is orthogonal to the drawing 
and not visible. In the right panel, A-layers and B-layers are stacked on top of the regular MTT structure 
given in grey.

Figure S 7. The TON (ZSM-22) structure can be generated by stacking the A-layer (unit indicated in 
green, atomic coordinates are given in the DIFFaX input file). This “unit-cell” is half the size of the 
regular MTT-unit-cell (indicated in blue). To generate the TON structure, a -0.22 shift in the c-direction 
is needed.
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Figure S 8. Simulation of powder XRD patterns (λ = 1.5406 Å) using DIFFaX of MTT/TON random 
intergrowths with different probabilities of faulting (shown in increments of 10%). Top: pure TON 
structure, bottom: pure MTT structure.
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Figure S 9. Plot showing the residual electron density (in yellow) of the DIQUAT sample after refinement 
with the ZSM-23 structure with Pmmn symmetry.

Figure S 10. Plot showing the residual electron density (in yellow) of the DIQUAT sample after 
refinement with the ZSM-23 structure with P21 symmetry.



S.8

Figure S 11. Plot showing the residual electron density (in yellow) of the DIQUAT sample after 
refinement with the ZSM-23 structure with Pmn21 symmetry.

Table S 1. Atomic coordinates of the refined MTT structure with Pmn21 symmetry.

Atom X Y Z Occupancy
Si(1)
Si(2)
Si(3)
Si(4)
Si(5)
Si(6)
Si(7)
O(1) 
O(2) 
O(3) 
O(4) 
O(5) 
O(6) 
O(7) 
O(8) 
O(10)
O(12)
O(14)
O(13)
O(15)
O(a)
O(b)

0.3722(5) 
0.1331(5) 
0.1730(5)  
0.3135(5) 
0 
0.2084(5) 
0.5
0.0603(8)  
0.1734(9) 
0.3262(9) 
0.441(1) 
0.2415(9)  
0.1585(9)  
0.1449(13) 
0.1316(11) 
0.5
0.148(1) 
0.1666(12) 
0.2593(13) 
0       
0.5
0.5

0.101(1)
-0.727(1)
-0.2243(11)
-0.1497(13)
-0.8091(16)
-0.4914(12)
-0.0262(15)
-0.728(2)
-0.365(2)
-0.010(2)
 0.056(2)
-0.174(2)
-0.5949(19)
-0.201(2)
-0.157(3)
-0.133(3)
-0.771(2)
-0.816(2)
-0.499(3)
-0.915(3)
0.45
0.45

0.52(1)
0.55(1)
0.53(1)
0.55(1)
0.46(1)
0.47(1)
0.46(1)
0.50(1)
0.47(1)
0.499(13)
0.488(14)
0.514(14)
0.507(11)
0.818(11)
0.318(12)
0.673(13)
0.843(11)
0.344(1)
0.70(1)
0.673(13)
0
0.5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.64(3)
0.64(3)
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c) d)
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Figure S 12 Distribution (in mass) of crystal 
length of different ZSM-23 samples: a) DIQUAT, 
b)PYRR, c) IPA, d) HTMPD, e) DMF.
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Figure S 13. Region around 2000 cm-1 of the FTIR spectra of ZSM-23 samples in presence of CO at 
equilibration pressure of 0.065 mbar. The spectra are shifted for clarity.
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Figure S 14. (a) Single-pulse 29Si MAS NMR spectrum (B0 = 7.05 T, νR = 7.0 kHz) for the H-ZSM-23 
sample DIQUAT including its deconvolution (Q2{0Al} magenta; Q3{0Al} red; Q4{1Al} blue; Q4{0Al} 
green). (b) The corresponding 29Si {1H} CP/MAS NMR spectra (B0 = 9.4 T, νR = 7.0 kHz) obtained with 
CP contact times of 0.5 – 5.0 ms.
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Figure S 15. Nitrogen adsorption (circles) and desorption (squares) for the H-ZSM-23 samples. The 
graphs are shifted for clarity.


