Supporting Information

Tandem synthesis of quinazolinone scaffolds from 2aminobenzonitriles using aliphatic alcohol-water system

Bivas Chandra Roy, Sk. Abdus Samim, Dibyajyoti Panja and Sabuj Kundu*

Department of Chemistry, IIT Kanpur, Kanpur 208016, UP (India), Email: sabuj@iitk.ac.in

Contents

1. General procedures and materials	3
2. General synthesis procedures	3
3 . Procedure for preparative scale synthesis	4-5
4. Optimization data for the coupling of 2-aminobenzamide with methanol	6-7
5. Determination of green chemistry metrics	7
6. Procedure for kinetic experiments	8-9
7. Kinetic isotope effect (KIE) studies	9
8. Characterization of the products	9-14
9. Computational studies	14-16
10. References	17-18
11. Cartesian coordinates and statistical thermodynamic analysis	19-39
12 . Copies of ¹ H and ¹³ C NMR spectra of the products	40-71

1. General procedures and materials

All the experiments were carried out under inert atmosphere using either standard Schlenk line techniques or argon filled Glove box. Glass apparatus were oven-dried overnight at 100 °C before use. Solvents were dried according to standard literature methods and deoxygenated with inert gas prior to use. Complexes **1a-6** were synthesized according to our previous work.^{1, 2} All 2-aminobenzonitriles, few 2-aminobenzamides and other commercially available reagents were purchased from Sigma-Aldrich, Alfa-Aesar, TCI-India, SDFCL, Avra and Spectrochem. Rest of the 2-aminobenzamides were prepared from 2-aminobenzoic acids according to previous literature report.³ RuCl₃.nH₂O (39% Ru on metal basis) was purchased from Arora-matthey, India. ¹H, ¹³C and ³¹P spectra were recorded on JEOL 400 and 500 MHz Spectrometer. All ¹H and proton decoupled ¹³C NMR spectra were reported in ppm relative to residual DMSO peak (2.5 ppm) and deuterated DMSO (39.5 ppm) respectively. ESI-MS were recorded on a Waters Micromass Quattro Micro triple-quadrupole mass spectrometer.

2. General synthesis procedures

2A. Coupling of 2-aminobenzamides with methanol and other long chain alcohols: To a pressure tube, magnetic stir-bar, Cat. 2 (0.5-2 mol%), Cs_2CO_3 (0.5 equiv.), 2-aminobenzamide derivatives (0.5 mmol) and methanol or other long chain alcohols (1.5 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

2B. Coupling of 2-aminobenzonitriles with methanol and other long chain alcohols: To a pressure tube, magnetic stir-bar, Cat. **2** (1-2 mol%), Cs_2CO_3 (1 equiv.), 2-aminobenzonitrile derivatives (0.5 mmol), water (0.18 mL) and methanol or other long chain alcohols (1.5 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

3. Procedure for preparative scale synthesis:

Scheme S1: Preparative scale synthesis of quinazolinones

3A. Synthesis of quinazolinones from 2-aminobenzonitriles: To a pressure tube, magnetic stirbar, Cat. **2** (1 mol%), Cs_2CO_3 (1 equiv.), 2-aminobenzonitrile derivatives (1.0 g), water (20 equiv.) and ethanol or 1-butanol (25 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

3B. Synthesis of quinazolinones from 2-aminobenzamides: To a pressure tube, magnetic stirbar, Cat. 2 (0.5 mol%), Cs₂CO₃ (0.5 equiv.), 2-aminobenzamide derivatives (1.0 g) and methanol or 1-butanol (25 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

3C. Synthesis of 2-(4-methoxyphenyl)quinazolin-4(3H)-one under neat condition: To a pressure tube, magnetic stir-bar, Cat. 2 (1 mol%), KO'Bu (1.5 equiv.), 2-aminobenzamide (1.0 g) and 4-methoxybenzyl alcohols (1 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for 26 hour. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

Procedure for natural product synthesis:

3D. Synthesis of 2-methylquinazolin-4(3H)-one (4a): To a pressure tube, magnetic stir-bar, Cat. **2** (1 mol%), Cs_2CO_3 (1 equiv.), 2-aminobenzonitrile (1 g), water (3 mL) and ethanol (25 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

3E. Synthesis of Schizocommunin: Schizocommunin was prepared from previously synthesized compound 2-methylquinazolin-4(3H)-one according to previous literature report.⁴

3F. Synthesis of Pegamine: In a Schlenk flask, magnetic stir-bar, Cat. **2** (1 mol%), KO'Bu (1.5 equiv.), 2-aminobenzamide (1.0 g), butane-1,4-diol (1.1 equiv.) and *p*-xylene (30 mL) were added under argon condition. Then the flask was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the flask was allowed to cool to room temperature and the reaction mixture was concentrated under reduced pressure. Finally, the desired product was purified through silica gel column chromatography using hexane/ethyl acetate as the eluent.

3G. Synthesis of Deoxyvasicinone: Deoxyvasicinone was prepared from previously synthesized compound pegamine according to previous literature report.⁵

4. Optimization data for the coupling of 2-aminobenzamide with methanol

Table S1: Optimization table

^{*a*} Reaction conditions: 2-aminobenzamide (0.5 mmol), Catalyst (0.5 mol%), base (0.5 mmol), MeOH (1.5 mL), 150 °C (oil bath temperature), 24 h, closed argon atmosphere; yield was

determined by ¹H NMR using 1,3,5-trimeyhoxybenzene as internal standard. ^{*b*} 26 h. ^{*c*} 140 °C. ^{*d*} Toluene : MeOH (v/v=1:1). ^{*e*} *p*-Xylene : MeOH (v/v=1:1).

5. Determination of green chemistry metrics

To a pressure tube, magnetic stir-bar, Cat. **2** (1 mol%), Cs_2CO_3 (8.46 mmol), 2-aminobenzonitrile (1 g), water (3.05 mL) and methanol (25 mL) were added under argon atmosphere. Then, the tube was sealed and dipped in a preheated oil-bath at 150 °C for specified time. After completion of the reaction, the tube was allowed to cool to room temperature and the reaction mixture is used for the determination of green chemistry metrics⁶⁻⁹ and the details are mentioned in the table below.

Table S2: Data for green chemistry metrics

✓ Reaction mass efficiency = $[1.09 / (1+0.152 + 0.271)] \times 100 = 76\%$

6. Procedure for kinetic experiments

The experiment was carried out following the general procedure **2A** by replacing only methanol with methanol-d₄. After the reaction, 1,3,5-trimethoxybenzene was added to the reaction mixture as internal standard and the solvent was evaporated under reduced pressure. Then, crude mixture was analyzed by using ¹H NMR and ESI-MS analysis. The reaction was performed twice and average data was reported.

Both of the reactions (B & C) were carried out following general procedure **2B** (D₂O and methanold₄ were used in the case of B and in case of C, H_2O^{18} was used in place of standard reagents). After the reaction, 1,3,5-trimethoxybenzene was added to the reaction mixture as internal standard and the solvent was evaporated under reduced pressure. Then, crude mixture was analyzed by using ¹H NMR and ESI-MS analysis. All the reactions were repeated multiple times and average data was reported.

The experiment was carried out following the general procedure 2A where only 2,3dihydroquinazolin-4(1H)-one (3a') in place of 2-aminobenzamide. After the reaction, 1,3,5trimethoxybenzene was added to the reaction mixture as internal standard and the solvent was evaporated under reduced pressure. Then, crude mixture was analyzed by using ¹H NMR and ESI-MS analysis. All the reactions were repeated multiple times and average data was reported.

7. Kinetic Isotope Effect (KIE) studies

Kinetic isotope effect of the synthesis of quinazolin-4-(3H)-one (**3a**) from 2-aminobenzamide was studied from the standard reactions which were carried out both in methanol and methanol-d₄ for different time periods. After obtaining the average yield of **3a** at different time interval, $\ln(a/a-x)$ vs time (hour) was plotted and k_H/k_D was calculated accordingly.

Fig. S1: Determination of Kinetic Isotopic Effect for synthesis of 3a from 2-aminobenzamide

8. Characterization of the Products:

Quinazolin-4(3H)-one (3a, 5a)¹⁰: White solid (70 mg, 96% isolated yield for **3a** and 67 mg, 91% isolated yield for **5a**); ¹**H NMR** (400 MHz, DMSO-d₆): $\delta = 12.24$ (brs, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.09 (s, 1H), 7.79 (t, J = 7.1 Hz, 1H), 7.65 (d, J = 8 Hz, 1H), 7.51 (t, J = 8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆): 160.78, 148.82, 145.48, 134.34, 127.27, 126.77, 125.87, 122.66.

6-Methylquinazolin-4(3H)-one (3b)¹⁰: Light yellow solid (75 mg, 94% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): 8.02 (s, 1H), 7.90 (s, 1H), 7.62 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 163.10, 160.93, 146.79, 144.88, 136.37, 135.54, 127.03, 125.23, 122.39, 20.85.

6,7-Dimethoxyquinazolin-4(3H)-one (3c, 5c)¹⁰: Gray solid (98 mg, 95% isolated yield for **3c** and 94 mg, 91% isolated yield for **5c**); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.06 (brs, 1H), 7.98 (s, 1H), 7.43 (s, 1H), 7.12 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 160.04, 154.43, 148.52, 144.85, 143.82, 115.58, 107.99, 104.88, 55.90, 55.67.

6,7,8-Trimethoxyquinazolin-4(3H)-one (**3d**)¹¹: Pale brown solid (78 mg, 66% isolated yield); **¹H NMR** (400 MHz, DMSO-d₆): δ = 12.17 (brs, 1H), 7.99 (s, 1H), 7.32 (s, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H).¹³C NMR (100 MHz, DMSO-d₆): 160.15, 152.21, 147.77, 147.12, 142.90, 138.51, 118.74, 101.20, 61.88, 60.89, 55.92.

6-Fluoroquinazolin-4(3H)-one (**3e**)¹⁰: White solid (76 mg, 92% isolated yield); ¹**H** NMR (500 MHz, DMSO-d₆): $\delta = 12.31$ (brs, 1H), 8.06 (s, 1H), 7.73 (dd, J = 8.6, 2.9 Hz, 1H), 7.71-7.68 (m, 1H), 7.64 (td, J = 8.6, 3, 1H). ¹³**C** NMR (125 MHz, DMSO-d₆): 161.0, 160.19, 159.05, 145.21 (d, J = 93.7 Hz), 130.02 (d, J = 8.2 Hz), 123.88 (d, J = 8.2 Hz), 122.68 (d, J = 23.9 Hz), 110.45 (d, J = 23.1 Hz).

6-Chloroquinazolin-4(3H)-one (3f, 5e)¹⁰: White solid (63 mg, 70% isolated yield for **3f** and 83 mg, 92% isolated yield for **5e**); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.44 (brs, 1H), 8.12 (s, 1H), 8.04 (d, *J* = 2.4 Hz, 1H), 7.82 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H). ¹³**C NMR** (100 MHz, DMSO-d₆): 159.81, 147.45, 145.95, 134.42, 131.01, 129.48, 124.82, 123.86.

6-Bromoquinazolin-4(3H)-one (3g)¹⁰: White solid (101 mg, 90% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 12.38$ (brs, 1H), 8.14 (d, J = 1.9 Hz, 1H), 8.11 (s, 1H), 7.89 (dd, J = 8.7, 1.8 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H). ¹³C NMR (125 MHz, DMSO-d₆): 159.65, 147.68, 146.01, 137.07, 129.56, 127.94, 124.20, 119.18.

6-Bromo-8-methylquinazolin-4(3H)-one (**3h**)¹²: White solid (72 mg, 60% isolated yield); ¹**H NMR** (400 MHz, DMSO-d₆): $\delta = 12.39$ (brs, 1H), 8.14 (s, 1H), 7.95 (d, J=1.7 Hz, 1H), 7.89 (s, 1H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 160.16, 145.55, 144.14, 138.68, 137.72, 125.24, 123.80, 121.53, 20.38; **ESI-MS** calculated for C₉H₈BrN₂O; 238.9820, found: 238.9833 ([M+H]⁺).

Benzo[g]quinazolin-4(3H)-one (3i)¹³: White solid (85 mg, 86% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 12.07$ (brs, 1H), 8.82 (s, 1H), 8.22 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 6.4 Hz, 2H), 7.64 (t, J = 7.1 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H). ¹³C NMR (100 MHz, DMSO-

d₆): 161.25, 144.58, 144.19, 136.03, 130.90, 129.20, 128.45, 127.79, 127.26, 126.31, 124.72, 121.61.

2H-Benzo[e][1,2,4]thiadiazine 1,1-dioxide (3j)¹⁰: White solid (50 mg, 55% isolated yield); ¹H **NMR** (500 MHz, DMSO-d₆): δ = 7.98 (s, 1H), 7.81 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.65 (t, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H). ¹³C **NMR** (125 MHz, DMSO-d₆): 147.71, 134.72, 133.14, 126.71, 123.71, 122.56, 117.58.

2-Methylquinazolin-4(3H)-one (4a, **5f**)¹⁴: White solid (76 mg, 94% isolated yield for **4a** and 76 mg, 95% isolated yield for **5f**); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.18 (brs, 1H), 8.05 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.74-7.70 (m, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.78, 154.27, 149.02, 134.22, 126.61, 125.81, 125.70, 120.69, 21.47.

2-Propylquinazolin-4(3H)-one (4b, **5g**)¹⁵: White solid (87 mg, 92% isolated yield of **4b** and 91 mg, 96% isolated yield for **5g**); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.15 (brs, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.75 (t, *J* =7.2 Hz, 1H), 7.58 (d, *J* = 7.1 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 2.56 (t, *J* =7.4 Hz, 2H), 1.78-1.69 (m, 2H), 0.92 (t, *J* =7.4 Hz, 3H); ¹³**C NMR** (100 MHz, DMSO-d₆): 161.85, 157.32, 148.93, 134.21, 126.77, 125.87, 125.67, 120.78, 36.35, 20.20, 13.47.

2-Pentylquinazolin-4(3H)-one (**4c**, **5h**)¹⁵: White solid (101 mg, 93% isolated yield for **4c** and 102 mg, 94% isolated yield for **5h**); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.15 (brs, 1H), 8.06 (d, *J* = 7.9 Hz, 1H), 7.74 (t, *J* = 8.3 Hz, 1H), 7.57(d, *J* = 8.1 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 1H), 2.57 (t, *J* = 7.5 Hz, 2H), 1.73-1.66 (m, 2H), 1.29-1.25 (m, 4H), 0.83 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 161.70, 157.40, 148.74, 134.17, 126.58, 125.80, 125.54, 120.55, 34.29, 30.59, 26.38, 21.68, 13.67.

6-Fluoro-2-pentylquinazolin-4(3H)-one (4d): White solid (101 mg, 86% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.29 (brs, 1H), 7.74-7.72 (m, 1H), 7.66-7.64 (m, 2H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.74-1.67 (m, 2H), 1.31 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.02 (d, J = 47 Hz), 158.35, 159.93, 145.81, 129.52 (d, *J* =7.9 Hz), 122.56 (d, *J* =23.6 Hz), 121.91 (d, *J* =8.1 Hz), 110.20 (d, *J* = 23.2 Hz), 34.38, 30.77, 26.45, 21.85, 13.79; **ESI-MS**: calculated for C₁₃H₁₆FN₂O; 235.1247, found: 235.1241 ([M+H]⁺).

6-Chloro-2-propylquinazolin-4(3H)-one (4e, 50)¹⁶: White solid (98 mg, 88% isolated yield for **4e** and 89 mg, 84% isolated yield for **5o**); ¹**H NMR** (400 MHz, DMSO-d₆): $\delta = 12.35$ (brs, 1H), 7.97 (d, J = 2.4 Hz, 1H), 7.75 (dd, J = 8.7, 2.4 Hz, 1H), 7.59 (d, J = 8.7, Hz, 1H), 2.56 (t, J = 7.4 Hz, 2H), 1.77-1.67 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 160.88, 158.00, 147.59, 134.30, 130.11, 128.99, 124.66, 122.02, 36.33, 20.12, 13.46.

6-Bromo-2-methylquinazolin-4(3H)-one (4f)¹⁴: White solid (108 mg, 89% isolated yield); ¹H **NMR** (400 MHz, DMSO-d₆): δ = 12.36 (brs, 1H), 8.11(d, *J* = 2.3 Hz, 1H), 7.88 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.50 (d, *J* = 8 Hz, 1H), 2.33 (s, 3H). ¹³C **NMR** (100 MHz, DMSO-d₆):160.61, 155.13, 147.85, 137.06, 128.94, 127.78, 122.25, 118.16, 21.49.

6-Methyl-2-propylquinazolin-4(3H)-one (4g)¹⁶: White solid (81 mg, 80% isolated yield); ¹H **NMR** (400 MHz, DMSO-d₆): δ = 12.05 (brs, 1H), 7.86 (s, 1H), 7.57 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.48 (d, *J* = 8.4, Hz, 1H), 2.55 (t, *J* = 7.5 Hz, 2H), 2.41 (s, 3H), 1.77-1.68 (m, 2H), 0.92 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.76, 156.36, 146.95, 135.50, 135.44, 126.66, 125.03, 120.53, 36.28, 20.74, 20.21, 13.49.

2-Pentylbenzo[g]quinazolin-4(3H)-one (4h): White solid (101 mg, 76% isolated yield); ¹H **NMR** (400MHz, DMSO-d₆): $\delta = 11.97$ (brs, 1H), 8.78 (s, 1H), 8.17-8.15 (m, 2H), 8.05 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 7.04 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 2.61 (t, J = 7.7 Hz, 2H), 1.80-1.73 (m, 2H), 1.34-1.32 (m, 4H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C **NMR** (100 MHz, DMSO-d₆): 162.24, 156.50, 144.35, 136.22, 130.54, 129.17, 128.33, 127.68, 127.03, 125.95, 123.93, 120.11, 34.58, 30.78, 26.27, 21.86, 13.85; **ESI-MS** calculated for C₁₇H₁₉N₂O; 267.1497, found: 267.1496 ([M+H]⁺).

3-Methyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (**4i**)¹⁷: White solid (53 mg, 54% isolated yield); ¹**H NMR** (400 MHz, DMSO-d₆): $\delta = 7.78$ (d, J = 8.0 Hz, 1H), 7.66 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 157.24, 135.19, 133.01, 126.14, 123.43, 121.01, 117.21, 22.60.

7-Methylquinazolin-4(3H)-one (5b)¹⁰: White solid (71 mg, 88% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.14 (brs, 1H), 8.05 (s, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.46 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 160.64, 148.88, 145.43, 144.83, 128.16, 126.87, 125.70, 120.21, 21.32.

7-Chloroquinazolin-4(3H)-one (5d)¹⁰: White solid (85 mg, 94% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.11 (s, 1H), 8.08 (d, *J* = 8.6 Hz, 1H), 7.67 (d, *J* = 1.9 Hz, 1H), 7.52 (dd, *J* = 8.6, 2.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆): 160.31, 149.88, 146.99, 139.04, 128.04, 127.13, 126.40, 121.48.

2,7-Dimethylquinazolin-4(3H)-one (5i)¹⁸: White solid (74 mg, 85% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 12.08$ (brs, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.36 (s, 1H), 7.26 (d, J = 8.1 Hz 1H), 2.42 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.61, 154.27, 149.12, 144.70, 127.29, 126.23, 125.55, 118.24, 21.44, 21.37.

7-Methyl-2-propylquinazolin-4(3H)-one (**5j**)¹⁹: White solid (88 mg, 87% isolated yield); ¹H **NMR** (400 MHz, DMSO-d₆): $\delta = 12.05$ (brs, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.39 (s, 1H), 7.26 (d, J = 8.2, Hz, 1H), 2.55 (t, J = 7.5 Hz, 2H), 2.42 (s, 3H), 1.77-1.68 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆):161.73, 157.32, 149.08, 144.69, 127.32, 126.48, 125.54, 118.39, 36.32, 21.33, 20.20, 13.47.

6,7-Dimethoxy-2-methylquinazolin-4(3H)-one (5k)¹⁴: White solid (88 mg, 80% isolated yield); ¹H NMR (500 MHz, DMSO-d₆): δ = 12.02 (brs, 1H), 7.38 (s,1H), 7.04 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.11 154.46, 152.52, 147.94 145.10, 113.42, 107.50, 104.84, 55.84, 55.61, 21.20.

6,7-Dimethoxy-2-pentylquinazolin-4(3H)-one (5l): White solid (124 mg, 90% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 12.00$ (brs, 1H), 7.39 (s, 1H), 7.07 (s, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.55 (t, J = 7.6 Hz, 2H), 1.74-1.66 (m, 2H), 1.33-1.26 (m, 4H), 0.87 (t, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆): 161.21, 155.89, 154.50, 147.99, 145.08, 113.55, 107.68, 104.82, 55.86, 55.62, 34.30, 30.75, 26.54, 21.83, 13.84. **ESI-MS** calculated for C₁₅H₂₀N₂O₃; 277.1552, found: 277.1556 ([M+H]⁺).

7-Chloro-2-methylquinazolin-4(3H)-one (**5m**)¹⁴: White solid (72 mg, 74% isolated yield); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.33 (brs, 1H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.60 (d, *J* = 1.6 Hz, 1H), 7.47 (dd, *J* = 8.6, 1.8 Hz, 1H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆): 161.11, 156.06, 150.09, 138.88, 127.80, 126.16, 125.72, 119.47, 21.50.

7-Chloro-2-propylquinazolin-4(3H)-one (**5n**)²⁰: White solid (94 mg, 84% isolated yield); ¹H **NMR** (400 MHz, DMSO-d₆): $\delta = 12.29$ (brs, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.61 (s, 1H), 7.46 (d,

J = 8.5 Hz, 1H), 2.56 (t, *J*= 7.5 Hz, 2H), 1.77-1.68 (m, 2H), 0.92 (t, *J* =7.4 Hz, 3H). ¹³**C** NMR (100 MHz, DMSO-d₆): 161.22, 159.07, 150.05, 138.89, 127.79, 126.20, 125.93, 119.61, 36.37, 20.17, 13.46.

Pegamine⁵: White solid (0.99 g, 66% isolated yield); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.15 (brs, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 8.3 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 4.56 (brs, 1H), 3.47 (t, *J* = 6.3 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 1.91-1.84 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆): 161.78, 157.48, 148.91, 134.24, 126.75, 125.87, 125.66, 120.78, 60.07, 31.28, 29.82. **ESI-MS**: calculated for C₁₁H₁₃N₂O₂; 205.0977, found: 205.0976 ([M+H]⁺).

Deoxyvasicinone⁵: White solid (0.794 g, 88% isolated yield); ¹**H NMR** (400 MHz, DMSO-d₆): δ = 8.08 (d, *J* = 8.1 Hz, 1H),7.74 (t, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 4.02 (t, *J* = 7.4 Hz, 2H), 3.04 (t, *J* = 8 Hz, 2H), 2.18-2.10 (m, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆): 160.24, 159.91, 148.99, 133.94, 126.57, 125.77, 125.62, 120.06, 46.25, 31.79, 18.86.

Schizocommunin⁴: Orange powder (1.84 g, 90% isolated yield); ¹**H** NMR (400 MHz, DMSOd₆): $\delta = 14.39$ (s, 1H), 11.48 (brs, 1H), 8.17 (dd, J = 6.4, 0.7 Hz, 1H), 7.93 (d, J = 6 Hz, 1H), 7.90-7.86 (m, 1H), 7.78 (d, J = 6.4 Hz, 1H), 7.60 (t, J = 6.2 Hz, 1H), 7.56 (s, 1H), 7.36 (t, J = 6.1 Hz, 1H), 7.08 (t, J = 6 Hz, 1H), 6.92 (d, J = 6.2 Hz, 1H). **ESI-MS**: calculated for C₁₇H₁₂N₃O₂; 290.0930, found: 290.0923 ([M+H]⁺).

2,3-Dihydroquinazolin-4(1H)-one (3a'): White solid; ¹H NMR (400 MHz, DMSO-d₆): δ = 7.89 (s, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.4 Hz, 1H), 6.75-6.68 (m, 2H), 6.54(s, 1H), 4.45 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): 164.33, 149.60, 133.07, 127.74, 117.47, 116.08, 114.70, 53.96. **ESI-MS**: calculated for C₈H₉N₂O; 149.0715, found: 149.0710 ([M+H]⁺).

3a-D (White solid): ¹**H NMR** (400 MHz, DMSO-d₆): δ = 12.24 (brs, 1H), 8.13-8.09 (m, 1H), 7.80 (t, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.53-7.50 (m, 1H). ¹³**C NMR** (100 MHz, DMSO-d₆): 160.77, 148.77, 134.32, 127.23, 126.74, 126.63, 125.85, 122.65.

9. Computational Studies: All calculations were performed using the Gaussian 09 package.²¹ Full geometry optimization followed by frequency calculations on the stationary points were carried out to ascertain the nature of the stationary points as minima or first order saddle point. Hybrid functional, B3LYP was used with the LANL2DZ basis set²² for Ru and 6-31G** basis set²³⁻²⁵ for non-metal elements. The transition states (TS) were further confirmed by performing

intrinsic reaction coordinate (IRC) calculation using same method. Solvent effect was incorporated using the polarizable continuum model (PCM) with methanol as solvent.²⁶

9A. Inner-sphere Pathway:

Between two possible pathways of methanol activation in this system, *Inner-sphere* pathway is shown in Fig. S1. In the *inner-sphere* pathway, initially by the treatment of base and methanol, complex 2 would transform to methoxy-bounded species I1_in which further would undergo PPh₃ dissociation to create the vacant space for the β -H elimination. As, there was no available vacant site *cis* to methoxy group of I2_in, this penta-coordinated species I2_in would further convert to intermediate I3_in via pseudo-rotation process having high activation barrier (TS1_in). Afterward, I3_in would undergo β -hydride elimination through a four-member transition state (TS2_in) to produce the metal-hydride species I4_in.

Fig. S2: Calculated Gibbs free energies (kcal/mol) for the methanol dehydrogenation following *inner-sphere* pathway (hybrid functional, M06-2X was used with the LANL2DZ basis set for Ru and the 6-31G** basis set for non-metal elements).

9B. Outer-sphere Pathway:

On the other hand, in the *outer-sphere* mechanism the base-mediated activation of the complex **2** would generate the intermediate **I1_out** which would further undergo the dissociation of one PPh₃

to produce the penta-coordinated species **I2_out** (Fig. **S2**). Afterwards, methanol would be dehydrogenated via the concerted *outer-sphere* manner (**TS1_out**). In this process hydroxyl hydrogen of methanol would transfer to the nitrogen atom of the imine side arm of the ligand and hydrogen of C-H bond of methanol to the electrophilic Ru-centre to produce the dihydride intermediate **I3_out**. For the dehydrogenation of methanol among the two plausible routes, the overall energy barrier was higher for the *inner-sphere* (40.15 Kcal/mol, Fig. **S1**) compared to *outer-sphere* pathway (24.86 Kcal/mol, Fig. **S2**). This suggested that the *outer-sphere* pathway was the more preferred one for this system. Further the energy barrier for liberation of hydrogen molecule from **I3_out** was calculated following outer-sphere pathway and the result revealed that elimination of hydrogen step is more energy demanding compared to methanol dehydrogenation step.

Fig. S3: Calculated Gibbs free energies (kcal/mol) for the methanol dehydrogenation and liberation of hydrogen following *outer-sphere* pathway (hybrid functional, M06-2X was used with the LANL2DZ basis set for Ru and the 6-31G** basis set for non-metal elements).

10. References

- B. C. Roy, K. Chakrabarti, S. Shee, S. Paul and S. Kundu, *Chem. Eur. J*, 2016, 22, 18147-18155.
- B. C. Roy, S. Debnath, K. Chakrabarti, B. Paul, M. Maji and S. Kundu, *Org. Chem. Front.*, 2018, 5, 1008-1018.
- X. Cheng, S. Vellalath, R. Goddard and B. List, J. Am. Chem. Soc., 2008, 130, 15786-15787.
- 4. K. Uehata, N. Kimura, K. Hasegawa, S. Arai, M. Nishida, T. Hosoe, K.-i. Kawai and A. Nishida, *J. Nat. Prod.*, 2013, **76**, 2034-2039.
- 5. J. Fang and J. Zhou, Org. Biomol. Chem., 2012, **10**, 2389-2391.
- R. Turgis, I. Billault, S. Acherar, J. Augé and M.-C. Scherrmann, *Green Chem.*, 2013, 15, 1016-1029.
- A. Ragupathi, V. P. Charpe, A. Sagadevan and K. C. Hwang, *Adv. Synth. Catal.*, 2017, 359, 1138-1143.
- N. S. Upadhyay, V. H. Thorat, R. Sato, P. Annamalai, S.-C. Chuang and C.-H. Cheng, Green Chem., 2017, 19, 3219-3224.
- 9. A. Sagadevan, P.-C. Lyu and K. C. Hwang, *Green Chem.*, 2016, 18, 4526-4530.
- 10. F. Li, L. Lu and P. Liu, Org. Lett., 2016, 18, 2580-2583.
- F. Liu, Z. Huai, G. Xia, L. Song, S. Li, Y. Xu, K. Hong, M. Yao, G. Liu and Y. Huang, Bioorg. Med. Chem. Lett., 2018, 28, 2561-2565.
- C. D. Haffner, J. D. Becherer, E. E. Boros, R. Cadilla, T. Carpenter, D. Cowan, D. N. Deaton, Y. Guo, W. Harrington, B. R. Henke, M. R. Jeune, I. Kaldor, N. Milliken, K. G. Petrov, F. Preugschat, C. Schulte, B. G. Shearer, T. Shearer, T. L. Smalley, E. L. Stewart, J. D. Stuart and J. C. Ulrich, *J. Med. Chem.*, 2015, **58**, 3548-3571.
- 13. M. Jiang, B. X. Li, F. Xie, F. Delaney and X. Xiao, J. Med. Chem., 2012, 55, 4020-4024.
- X. Zhang, D. Ye, H. Sun, D. Guo, J. Wang, H. Huang, X. Zhang, H. Jiang and H. Liu, *Green Chem.*, 2009, **11**, 1881-1888.
- K. Upadhyaya, R. K. Thakur, S. K. Shukla and R. P. Tripathi, J. Org. Chem., 2016, 81, 5046-5055.
- 16. W. Xu and H. Fu, J. Org. Chem., 2011, **76**, 3846-3852.

- D. Yang, H. Liu, H. Yang, H. Fu, L. Hu, Y. Jiang and Y. Zhao, *Adv. Synth. Catal.*, 2009, 351, 1999-2004.
- M. S. Thakur, O. S. Nayal, V. Bhatt, S. Sharma and N. Kumar, *Asian J. Org. Chem.*, 2016, 5, 750-754.
- 19. H. Chai, J. Li, L. Yang, H. Lu, Z. Qi and D. Shi, *RSC Adv.*, 2014, **4**, 44811-44814.
- Liu Change, Yu Qiyao, Tang Jianhong and L. Jiarong, *Chin. J. Org. Chem.*, 2012, 03, 532-537.
- G. W. S. M. J. T. Frisch, H. B.; Scuseria, G. E.; Robb,; M. A.; Cheeseman, J. R. S., G.;, V. B. P. M. Barone, G. A. N., H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F. B.,, G. J. L. H. S. J.; Zheng, M.; Ehara, M. T., K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;, T. H. Nakajima, Y., O. N. K., H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E. O., F.;, M. H. Bearpark, J. J.; Brothers, K. N. S. E.; Kudin, V. N. K., R.; Normand, J.; Raghavachari,, A. B. K.; Rendell, J. C.; Iyengar, S. S.; J. C. Tomasi, M.; Rega, N.; Millam, J. M. K., M.; Knox, J. E.;, J. B. B. Cross, V.; Adamo, C.; J. G. Jaramillo, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;, R. P. Cammi, C.; Ochterski, J. W.; Martin, R., K. Z. L.; Morokuma, V. G. V., G. A.; Salvador, P.;, J. J. D. Dannenberg, ; S.; Daniels, A. D. and O. F. F., J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, and D. J., *Wallingford CT*, 2009.
- 22. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 23. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
- 24. V. A. Rassolov, J. A. Pople, M. A. Ratner and T. L. Windus, *J. Chem. Phys.*, 1998, **109**, 1223-1229.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665.
- 26. J. Tomasi and M. Persico, *Chem. Rev.*, 1994, **94**, 2027-2094.

11. Cartesian Coordinates and Statistical Thermodynamic Analysis

Methanol

SCF Done	:-115.66334
SCF Done for solvent	:-115.66832
Zero-point correction	:0.05225
Total Electronic Energy	:-115.61109
Total Thermal Energy	:-115.60786
Total Thermal Free Energy	:-115.63375

Х	Y	Z
0.65860100	-0.01986000	0.0000000
1.08122000	0.98683600	-0.00000200
1.02879700	-0.54401800	-0.89140400
1.02879700	-0.54401400	0.89140600
-0.74457300	0.12225300	0.0000000
-1.13383600	-0.75766200	0.0000000
	X 0.65860100 1.08122000 1.02879700 -0.74457300 -1.13383600	X Y 0.65860100 -0.01986000 1.08122000 0.98683600 1.02879700 -0.54401800 1.02879700 -0.54401400 -0.74457300 0.12225300 -1.13383600 -0.75766200

PPh₃

SCF Done	:-1035.96765
SCF Done for solvent	:-1035.97436
Zero-point correction	:0.27635
Total Electronic Energy	:-1035.69129
Total Thermal Energy	:-1035.67643
Total Thermal Free Energy	:-1035.73532

Atom	Х	Y	Z
С	2.43733000	-2.20019000	1.26747400
С	2.34475900	-3.47437600	0.71436300
С	1.75102400	-1.13308800	0.69230500
С	2.41916800	3.18129400	-0.41931500
С	1.56708700	-3.67996400	-0.42277100
С	1.82930400	2.06234300	-0.99799600
С	0.96772800	-1.32923000	-0.44945100
С	1.84501200	3.76609600	0.70728900
С	0.89174100	-2.61207100	-1.00471200
С	0.66853600	1.50151300	-0.45066000
С	0.68410900	3.22386600	1.25165400
С	0.09940500	2.09638700	0.67907900
С	-1.85939700	-0.93863600	0.70321300
С	-1.63808200	-0.17538500	-0.44711400
С	-3.12825900	-0.99718600	1.27565900
С	-2.71128200	0.52435300	-1.01120400
С	-4.18642200	-0.28910000	0.71230300
С	-3.97545300	0.47571700	-0.43244600
Н	3.04445700	-2.03441500	2.15216600
H	2.88012200	-4.30381700	1.16563100
Н	1.82474000	-0.14315500	1.13323300
H	3.32105900	3.60238900	-0.85229900
H	2.27207600	1.61562900	-1.88501700
H	1.49362600	-4.66995800	-0.86181900
Н	2.29821600	4.64466100	1.15534700
Н	0.29686900	-2.77269100	-1.90076300
Н	-1.03785200	-1.48940500	1.15263900
H	0.23151000	3.67813100	2.12760000
H	-0.80289900	1.67720000	1.11443100
Н	-3.28959400	-1.59655400	2.16642700
Н	-2.55136800	1.11070800	-1.91287400
Н	-5.17359100	-0.33702800	1.16105300
Н	-4.79677800	1.02676700	-0.87982200
P	-0.00322900	-0.00150200	-1.28279700

SCF Done	:-2963.55842
SCF Done for solvent	:-2963.57586
Zero-point correction	:0.815267
Total Electronic Energy	:-2962.74316
Total Thermal Energy	:-2962.69189
Total Thermal Free Energy	:-2962.82902

Х

Z

1 12010500	0 56077000
-4.13019300	-0.30877000
-2.20/89800	-2.5499/100
-2.83311900	-2.83351300
-1.52807700	-3.71148900
-2.60091700	3.45139500
-2.93777000	3.04020200
-1.71806300	-1.30314000
-2.21793600	-1.51989100
-1.61767300	4.52064800
-2.12509200	-3.92097700
-4.23057600	-0.56923100
-1.48136700	4.80075900
-1.45784700	2.94510700
-2.13128400	2.13264700
-0.35582000	-3.62686000
-4.13158600	-1.92091500
-1.24514500	3.27490000
-3.08075400	0.20601900
-0.54034400	-1.21131400
-0.64896000	2.03718600
-0.97630900	1.63232600
-0.97278700	3.82841500
-0.77744700	-3.79187700
	-4.13019500 -2.20789800 -2.83311900 -1.52807700 -2.60091700 -2.93777000 -1.71806300 -2.21793600 -1.61767300 -2.12509200 -4.23057600 -1.48136700 -1.45784700 -2.13128400 -0.35582000 -4.13158600 -1.24514500 -3.08075400 -0.54034400 -0.54034400 -0.97630900 -0.97278700 -0.77744700

Y

С	-2.68884000	0.12757600	-2.38288700
C	3,13274800	-2.87759400	-2.49780900
C	2 98164400	-0 74148100	2 29002000
C	2 70325200	-1 821//800	-0 36359800
C	4 34427800	-0 60675700	2 58127100
C	4.54427000	-0.22620400	-2 52275100
C	0.41521500	-0.22620400	-2.52275100
	3.01315200	-1.72870300	-1./246//00
C	0.045/5400	1.03290400	2.12652500
C	0.72556000	1.21/9//00	-2.319/6600
C	-3.13430500	1./0410500	0.64501600
С	-3.77066600	2.43870900	-0.35762300
С	3.48105400	0.96647900	0.03662400
С	1.44722200	1.96903200	-3.24633400
С	-2.95196800	2.30185700	1.90363400
С	4.70954300	0.69231900	-0.57717600
С	-4.18765500	3.74874600	-0.12028900
С	3.12075200	2.29721400	0.27146100
С	0.31262800	3.10022300	-1.01020200
С	-3.37718900	3.60440100	2.14132000
С	1.56450200	3.33996700	-3.03544900
С	-3.98850400	4.33758900	1.12370900
С	5.55049700	1.73163900	-0.96310200
С	3.96673100	3.33497800	-0.11079200
С	0.96784600	3.93277600	-1.93686900
С	5.17856500	3.05459800	-0.73438700
С	-0.42278400	5.00129200	0.36520900
H	-0.57339000	-4.84816000	-0.85444600
Н	-1.76965400	-4.46335400	0.39301700
Н	-2.17075300	-4.23027800	-1.31453100
Н	-4.75411400	-3.13022000	-2.61088500
H	-0.65940200	-3.86575500	-2.93999200
H	-4.12035300	-1.91847600	-4.68150900
н	-5 14824200	-3 23092000	4 16110300
н	-2 85616800	-3 83418500	3 42574800
н	1 94735400	-2 00783500	5 27363900
ч	-4 05990600	-2 27015800	-0 40437700
ч	2 46719200	-5 20437300	-0.11518500
и П	0 08909900	-2 599//200	-1 89928700
п п	4 36817000	_1 76681600	5 77367800
п п	-6 24236400		3 25582400
n u	-0.24250400	-1.19491900	-2 52695400
n u	2 22652500	-3.02009500	-2.52005400
п	2.22052500	-3.10401200	1.25599900
H	1.06535600	-1.34/02100	3.06241300
H	-1.66099500	-2.40022900	1.70003400
H	-2.77467600	0.16/11800	-4.52/04900
н		-1.13119600	1.343//400
н	5.89/55200	-0.85842/00	4.04090/00
H	-5.0438/100	0.23984000	1.64146400
H	0.73493500	-0.18601400	-4.65560700
Н 	3.35104000	-2./8890300	-3.55/55600
Н	-2.06492500	1.01635500	-2.32072900
Н	5.02411900	-0.20595600	1.83591600

Н	3.13081500	-0.75491100	-2.19266900
Н	-3.95163300	1.98996700	-1.32816100
Н	1.90527200	1.49314000	-4.10329500
Н	5.00769600	-0.33673400	-0.75485600
Н	-2.47645800	1.74161000	2.70441900
Н	2.17227900	2.52072900	0.75578600
Н	-4.67852700	4.30396300	-0.91340200
Н	-0.88532000	2.96065600	0.59721300
Н	-3.23181200	4.04606200	3.12265800
Н	2.11749900	3.95170900	-3.74180200
Н	6.49846800	1.50759900	-1.44214600
Н	-4.31460000	5.35677800	1.30566400
Н	3.67011200	4.36344000	0.07212000
Н	-0.93799700	5.13076800	1.31741900
Н	1.02594900	5.00156000	-1.77515400
Н	0.53927000	5.52183700	0.42488000
Н	-1.02762700	5.46969300	-0.42423000
Н	5.83454600	3.86380800	-1.03930500
N	-0.87751400	-2.77943500	-0.43483400
N	0.01575800	-0.90051000	-1.43080100
N	0.22520300	1.77321300	-1.19955700
N	-0.22495900	3.58593400	0.15030800
0	0.07364200	1.56288400	3.15388200
Р	-2.37719400	0.03699000	0.38644700
P	2.31406600	-0.32634100	0.62231000
Ru	0.00935300	0.14346300	0.50227600

I2_out

SCF Done	: -1927.518681
SCF Done for solvent	: -1927.54172
Zero-point correction	: 0.53616
Total Electronic Energy	: -1926.98252
Total Thermal Energy	: -1926.94766
Total Thermal Free Energy	: -1927.05056

tom	Х	Y	Z
С	-3.56176900	-2.70848500	-1.93024100
С	-1.63714800	-3.98178700	-0.34496200
С	-1.41748000	-2.69726600	-0.99992400
С	-3.19951900	3.63111500	-1.52616900
С	-0.65884800	-4.57550500	0.38702200
С	-3.94872300	-1.25391300	1.35842200
С	-3.35739800	4.60565300	-0.54549700
С	-3.41574800	-2.19224900	2.23572100
С	-2.36778600	2.53796800	-1.30001500
С	-3.12855600	-0.28047000	0.79256900
С	-2.68144300	4.48386600	0.66570900
С	0.59347100	-3.93786500	0.56231900
С	-2.05975400	-2.15329800	2.55878000
С	-1.69179700	2.40458800	-0.08253100
C	-1.77446500	-0.23013500	1.12276500
C	-1.85414600	3.38994200	0.89817800
C	0.77142300	-2.70746500	-0.03552600
C	-1.24140600	-1.17807400	2.00542500
C	0.61852000	1.53488700	-2.28471400
C	2.06898700	-1.98/25600	0.11098/00
C	0.54064400	1.46280000	1.50645900
C	3.01240900	-2.34594200	1.0/33/300
C	0.21/5/000	1.51836200	2.86855300
C	1.81697700	1.85405500	1.09201900
C	3.4/362400	-0.32/90800	-0.72885200
C	4.22824900	-1.67192200	1.09627500
C	2.75650100	1.95625400	3.79622000
C	2.75059100	2.20709500	2.02379900
C	4.40900300	-0.00002000	2 27527000
C	2.42903000	2.330/0300	-1 94241400
U U	-4.10226300	-2 86494900	-1.84341400
п ц	-4.10220300	-2.00494900	-2 55809200
п ц	-3 50235400	-2.00043000	-2.12783000
п ц	-2 59864500	-4 46435100	-0 46724900
н	-3 71868200	3 72133700	-2 47476200
н	-5 00157100	-1 28662400	1 09686200
н	-0 83426600	-5 54543500	0 84549600
H	-4.00167500	5.46037700	-0.72599000
Н	-4.05350400	-2.96000700	2.66252800
Н	-3.54213800	0.42970800	0.08304400
H	-2.24295900	1.78170400	-2.06818800
Н	-1.19091600	0.03198900	-2.03135900
Н	-2.79562600	5.24341600	1.43239700
Н	1.39315400	-4.42895200	1.09862400
Н	-1.63402900	-2.89757800	3.22402600
Н	-1.32744400	3.31159800	1.84359400
Н	-0.17935800	-1.17131500	2.23842000
Н	2.79681900	-3.12379000	1.79240900
Н	-0.76767400	1.20713800	3.20399300

Н	2.07905900	1.81267200	0.03864600
Н	2.94409700	0.71700300	-2.36608100
Н	4.98183400	-1.93823900	1.83115700
Н	0.89815500	1.99260200	4.84944000
Н	3.74645700	2.58394300	1.69023700
Н	4.76803800	2.09323000	-2.63126800
Н	5.43930500	-0.14995600	0.17026100
Н	5.22010100	1.87672600	-0.93904300
Н	5.68852000	0.65272200	-2.14162200
Н	3.16336200	2.67495900	4.10122200
N	-2.27254100	-2.08447300	-1.75629700
Ν	-0.17160900	-2.09193000	-0.78438900
N	2.28961100	-0.96524100	-0.73956100
N	3.62771200	0.69451400	-1.62412500
0	0.82796300	2.55062800	-2.79407200
Р	-0.66348100	0.91348600	0.23243800
Ru	0.25297600	-0.10753900	-1.49373700

I3_out

SCF Done	: -1928.74940
SCF Done for solvent	: -1928.77092
Zero-point correction	: 0.555411
Total Electronic Energy	: -1928.19399
Total Thermal Energy	: -1928.15826
Total Thermal Free Energy	: -1928.26255

Atom	Х	Y	Z
С	-4.66571300	0.90614100	-1.89354000
С	-4.28068500	-1.44288700	-0.25903200
С	-3.19867000	-0.79750300	-0.90317400
С	1.05164600	4.73610000	-1.28268600
С	-4.02532300	-2.56476000	0.49759800
С	-3.13828400	2.35430200	2.09581100
С	1.56252300	5.43587000	-0.19542300
С	-3.57794000	1.24150900	2.80660600

С	0.67993800	3.39876600	-1.14302900
С	-1.93757800	2.31081900	1.39062200
С	1.70358200	4.80032600	1.03873300
С	-2.71597700	-3.02139600	0.64910900
С	-2.80882700	0.08003100	2.80882100
С	0.81818000	2.75807000	0.08924300
С	-1.15457600	1.15108800	1.38917300
С	1.33380100	3.46867200	1.18027700
С	-1.69832100	-2.30939200	0.02352600
C	-1.61197100	0.03482800	2.10234600
C	1.26291100	0.39960900	-2.72763900
С	-0.26904700	-2.67434100	0.23093800
С	1.67450400	0.35056100	1.30284000
C	0.13233400	-3.43097700	1.32837400
C	1.58260800	-0.04110300	2.63990100
C	2,91455200	0.24533900	0.65467400
C	1 90168600	-2 52046500	-0 56692500
C	1 49269300	-3 70380300	1 47550400
C	2 69746200	-0.54742400	3 30905300
C	4 03117100	-0.22994400	1 33234300
C	2 39049200	-3 27539100	0 52150200
C	3 92295400	-0 64141700	2 66060100
C	4 11787700	-2 40742700	-1 63696900
С Н	-5 09126100	1 27407900	-0 95124300
и П	-4 53011400	1 75639700	-2 56167700
и П	-5 38670000	0 22088200	-2 35681200
и П	-5 28732300	-1 06478900	-0 38102100
и П	0 94486900	5 225/0500	-2 24558700
и П	-3 73058700	3 26414200	2.24330700
и П	-4 84482700	-3 00153200	0 97685500
и П	-2 54710200	0 64443300	-2 1377/100
и П	1 85552400	6 47532100	-0 30628200
и П	_4 51431300	1 277/9200	3 35434300
n u	-4.51451500	3 18396400	0 83404600
n u		2 84290200	-1 98669900
n u		2.04290200	-2.45433000
и П	2 10488000	5 3/369500	1 8885/800
11 U	-2 40771000	-2 01240200	1 22172700
n u	-2.49771900	-0.80011000	3 3/888000
n u	-3.14437200	2 97116900	2 1/011000
п u	-1 02052000	_0 99177000	2.14011000
п u	-0 59370200	-0.00177000	2.10201200
	-0.58570200	-3.70295500	2.00051400
п	0.04339700	0.06203600	3.1/030300
п	2 24826700	1,53960300	-0.36943000
п	2.24020700	-1.0/10/000	-2.33141900
н	1.84524200	-4.260/6900	2.33799200
п	∠.0U3693UU	-0.0314/900	4.34/31/UU
п	4.990/4300	-0.2/324600	U.0ZJZI0UU
п	4.53523800	-1.92001300	-2.51000400
п u		-3.40000400	0.01011500
н	4.655/2000	-2.03//0500	-U./3619600
н	4.29063600	-3.48880500	-1./2021300

Н	4.79281200	-1.02144300	3.18737200
Ν	-3.38504100	0.28208300	-1.68759500
Ν	-1.93114700	-1.24004300	-0.75677100
Ν	0.60330300	-2.18290700	-0.66321400
Ν	2.71808700	-2.07846200	-1.55483800
0	2.15489000	0.81797600	-3.34151600
P	0.29283600	1.00374700	0.26342100
Ru	-0.14242900	-0.27071700	-1.78113200
Н	-0.54635000	-1.05573600	-3.12001800

TS1_out

SCF Done :-2	2043.19421
SCF Done for solvent :-:	2043.21802
Zero-point correction :0	0.585502
Total Electronic Energy :-:	2042.60871
Total Thermal Energy :-:	2042.57093
Total Thermal Free Energy :-:	2042.67974

Atom C

Х

7	
L	
_	

-4.42905800	-1.91037100	-1.11778800
-2.93442800	-2.70548900	1.15151900
-2.30171000	-2.09579700	0.03297400
-1.20143400	4.35922900	-2.24156200
-2.16288300	-3.17903800	2.18297600
-4.05109500	1.00261600	1.37310800
-0.91567700	5.48207100	-1.47246000
-3.99998200	0.37451900	2.61556400
-0.94668700	3.08370900	-1.74262400
-2.87648400	1.28566400	0.68348700
-0.37586800	5.32678500	-0.19766800
-0.77327500	-3.04204000	2.13931200
-2.76879800	0.01338900	3.15357700
-0.40994300	2.91871100	-0.46111600

Y

С	-1.63380600	0.94555300	1.22818900
С	-0.12539800	4.05468100	0.30532900
С	-0.21573600	-2.38150800	1.05290100
С	-1.59252900	0.28336200	2.45911500
С	0.98937200	0.62101100	-2.56864500
С	1.26524700	-2.21528600	0.94266700
С	1.23674700	1.47215500	1.39989800
С	2.13175300	-2.58394200	1.97001400
С	1.07834000	1.95652800	2.70489600
С	2.52564500	1.18978400	0.93586200
С	3.04167800	-1.67425300	-0.45495700
С	3.50249700	-2.49917800	1.74073800
С	2.18457200	2.12754700	3.53183800
С	3.63117500	1.36105200	1.76428300
C	3.97992600	-2.07500700	0.51599500
C	3.46171800	1.82232500	3.06613400
С	4.79311400	-1.18965600	-2.11872600
H	-4.95016900	-1.32342500	-0.35138800
Н	-4.76150500	-1.57389000	-2.10007000
Н	-4.71738200	-2.96524300	-1.00251300
Н	-4.01030500	-2.81490600	1.16731600
Н	-1.61732800	4.47041100	-3.23771000
Н	-5.00734300	1.27896700	0.93943400
Н	-2.63370100	-3.67169000	3.02850300
Н	-2.53110400	-1.69907400	-1,99216300
Н	-1,10674100	6.47564000	-1.86571200
Н	-4.91613900	0.15986300	3.15678300
Н	-2.92662700	1.76942000	-0.28801400
Н	-1,16581300	2,21121900	-2.34935100
Н	-1.16482000	0.14286600	-2.02573300
Н	-0.14353500	6.19841400	0.40599300
Н	-0.15790300	-3.45355300	2.92633200
Н	-2,71936300	-0.49966800	4,10936900
Н	0.30594900	3,94960500	1,29539500
Н	-0.64134500	-0.03558100	2.87534800
Н	1.76067500	-2.92947400	2.92424400
Н	0.08752500	2.20102700	3.07681400
Н	2,65892400	0.83836700	-0.08453400
Н	2.68129100	-1.13180700	-2.35138400
Н	4.19988200	-2.78530400	2.52187300
Н	2.04847700	2.50154700	4.54169900
Н	4.62331800	1.12656700	1.39059900
Н	4.82784100	-0.76837600	-3.12310500
Н	5,04164400	-2.03520000	0.30873900
Н	5,42097800	-0.56625800	-1,47312700
 Н	5,22034900	-2.20110400	-2.14672300
н	4 3215250	1.95070400	3,71625600
N	-3 00178300	-1.70627500	-1.04542600
N	-0 95779100	-1.89636700	0.03579800
N	1,72004700	-1.72052400	-0.21926400
N	3,42280400	-1.17544000	-1.66465000
0	1,52682300	1.30617500	-3.32814600
-	02002000		0.01011000

Р	-0.13291700	1.21852400	0.20003200
Ru	0.11524900	-0.48030400	-1.39154500
Н	0.05667200	-1.65405100	-2.67822500
С	-0.87846100	-2.57272200	-3.22846500
Н	-0.76967700	-3.29969900	-2.39791800
Н	-0.19382100	-2.80252500	-4.06596800
0	-2.00829200	-2.06323100	-3.47772400

TS2_out

SCF Done	: -1928.69807
SCF Done for solvent	: -1928.71576
Zero-point correction	: 0.550431
Total Electronic Energy	: -1928.14764
Total Thermal Energy	: -1928.11252
Total Thermal Free Energy	: -1928.215

Х	Y	Z
-4.60591600	1.63251100	-2.42141600
-4.67657900	0.11436100	-0.00134700
-3.50852700	0.26927300	-0.83739100
2.55961600	4.02418500	-1.59255100
-4.69752900	-0.85064700	0.96671400
-1.19547100	3.55186700	2.66768300
3.60433200	4.30914900	-0.72022100
-2.04648900	2.75382800	3.42483700
1.69561500	2.96247200	-1.32930600
-0.34171500	2.97765200	1.72845900
3.78468900	3.53239000	0.42294100
-3.58606200	-1.69863700	1.16219400
-2.04115000	1.37298200	3.24233400
1.87371800	2.17554800	-0.18934500
-0.32883900	1.59260300	1.54010900
2.92500200	2.47280800	0.68801400
-2.45045300	-1.42750300	0.42086400

С	-1.19074400	0.79764900	2.30594900
С	0.95060000	0.14828500	-2.66170800
С	-1.23802900	-2.28664500	0.49900400
С	1.81641700	-0.35957300	1.06662000
С	-0.98319500	-3.12702800	1.57897600
С	1.72966500	-0.71767900	2.41239000
С	2.84571300	-0.89971000	0.28257700
С	0.66565500	-3.00931900	-0.61609200
С	0.15407200	-3.93118400	1.53238200
С	2.64859000	-1.61280200	2.96302300
С	3.77195100	-1.77352100	0.83923600
С	0.98297400	-3.90138100	0.42761300
С	3.66975300	-2.13933400	2.18140500
С	2.54380500	-3.78289300	-2.01057600
Н	-4.91685200	2.45197800	-1.75529900
Н	-4.39811700	2.07358500	-3.39940500
Н	-5.47211700	0.96045600	-2.53490700
Н	-5.53841400	0.74633000	-0.17798000
Н	2.41257900	4.62529100	-2.48403700
Н	-1.19599300	4.62886200	2.80127000
Н	-5.59165000	-0.99020500	1.56873500
Н	-2.21033700	0.14947300	-2.74079500
Н	4.27816600	5.13428700	-0.92854700
Н	-2.71563400	3.20466000	4.15075700
Н	0.30771100	3.61537200	1.13796300
Н	0.87617800	2.74768600	-2.00708300
Н	-0.81127000	1.47404200	-1.85706400
Н	4.59689100	3.75138700	1.10876400
Н	-3.63631400	-2.55075500	1.82672100
Н	-2.70800600	0.73875500	3.81771100
Н	3.07088600	1.87182400	1.58147600
Н	-1.20299100	-0.27866800	2.17458200
Н	-1.64204700	-3.13436600	2.43774800
Н	0.95727900	-0.29040700	3.04322800
Н	2.92590100	-0.62753300	-0.76744700
Н	1.02082300	-2.38016800	-2.49026200
Н	0.39172000	-4.58661900	2.36462300
Н	2.56867200	-1.88454300	4.01093600
Н	4.58119500	-2.16148400	0.22765000
Н	2.98623700	-3.49787800	-2.96523600
Н	1.86593500	-4.52506100	0.37192600
Н	3.31526500	-3.68843900	-1.23820600
Н	2.23611600	-4.83590400	-2.06604300
Н	4.39127100	-2.82465100	2.61518500
Ν	-3.42199800	0.95715200	-1.94772400
Ν	-2.36874400	-0.40843800	-0.45105400
Ν	-0.40740100	-2.20618800	-0.55755500
Ν	1.44245800	-2.89559300	-1.73108600
0	1.86733100	0.22209300	-3.35982600
P	0.68931700	0.82728300	0.21784100
Ru	-0.52490400	-0.01920900	-1.55003500
Н	-1.62471100	-0.40490000	-3.04271100

SCF Done	:-2043.24329
SCF Done for solvent	:-2043.26483
Zero-point correction	:0.591047
Total Electronic Energy	:-2042.65224
Total Thermal Energy	:-2042.61425
Total Thermal Free Energy	:-2042.722

x	
11	

Х	Y	Z
2.20585300	3.75662600	-2.11565100
0.65268500	4.13085900	0.29358800
0.46637800	3.00975800	-0.54939100
3.38629800	-3.08388400	-2.31198100
-0.07774600	4.20560900	1.45818500
4.11961000	1.89903200	0.45400500
4.05263900	-3.92367100	-1.42653500
3.80878600	2.63726500	1.59426100
2.46385200	-2.15344200	-1.83613100
3.30398100	0.84201300	0.05984700
3.79724100	-3.83075300	-0.05993200
-0.98303300	3.19455000	1.78642400
2.67603500	2.31390300	2.33547600
2.20468200	-2.05119600	-0.46610900
2.16732000	0.50672000	0.80316800
2.88090300	-2.90015500	0.41720600
-1.12024700	2.12682800	0.90895100
1.85733400	1.26005100	1.94003700
-0.71066400	-1.61068200	-2.16968400
-2.15070200	1.06786200	1.12249500
0.30721300	-1.56849900	1.64505400
-2.93647200	0.96273900	2.26583800
0.92913200	-1.59986300	2.89939000
-0.93397300	-2.19683700	1.49216200

С	-3.42588900	-0.51033700	-0.02515300
С	-3.98041800	0.03362100	2.24425900
С	0.31300900	-2.22765500	3.97861200
С	-1.54954300	-2.82353500	2.57188100
С	-4.26681200	-0.68595300	1.09869000
С	-0.93051600	-2.83460100	3.81804000
С	-4.80742400	-1.83857500	-1.52958200
Н	3.00303200	3.80003200	-1.36149200
Н	2.63045300	3.38033500	-3.04626000
Н	1.83818400	4.77329600	-2.29839700
Н	1.35719100	4.90564500	0.02006600
Н	3.57403000	-3.15507600	-3.37852300
Н	5.00313800	2.14265100	-0.12840000
Н	0.04682100	5.05768500	2.11962700
H	0.98256400	2.00215000	-2.20978300
H	4,76519400	-4.65291700	-1,79895900
Н	4,44624900	3,46023200	1,90181000
Н	3,55310100	0.26980700	-0.83010400
Н	1,93779900	-1.50383600	-2.52831800
Н	0.62623200	0.20384000	-2.40773000
н	4 30951300	-4 48740300	0 63619000
н	-1 58529000	3 25903500	2 68256800
н	2 41575400	2 89171600	3 21711100
н	2 68265000	-2 84604000	1 48288500
н	0 96695600	1 02935700	2 51715600
п п	-2 75749200	1 57390900	3 1/033500
и П	1 89719700	-1 12640400	3 03679700
Ч	-1 42082500	-2 18972200	0 52054500
11 U	-3 14263300	_0 52522200	-1 00620300
и П	-1 60367500	-0 0925/100	3 12/59000
и П	4.00507500 0.80523100	-2 24064000	A 94606700
n u	-251865500	-2.24004000	2 43634500
11 U	-4 77647300	-2 14083600	-2 57632300
n u	-5 12016000	-2.14003000	1 05091900
n u	-1 84990300	-2 74749600	-0.91866900
n u	-5.73212600	-2.74749000	-0.91808900
n u	-3.73212000 -1.41200700	-3.31686400	-1.55920400
n N	-1.41290700	-3.31000400	-1 71116500
N	-0.40676800	2.07272300	-1.71110500
IN NI	-0.40070000	2.03417000	-0.23189000
N	-2.53413900	-1 07570000	-1 22021600
N	-3.01024900	-1.07576900	-1.23921600
D	-0.8041/400	-2.03340700	-2.66909000
P Dec	1.02044600	-0.77391800	0.14252700
кu	-0.553/3000	0.03569500	-1.30/05300
0	-2.06024800	0.04216200	-2./4104900
C	-2.48354200	1.95/61500	-2.62793000
H	-1.66814300	2.68507400	-2.80022100
H	-3.26673400	2.17806000	-3.37236400
Н	-2.90905500	2.19774300	-1.63162500

Total Thermal Energy:-1006.8/208Total Thermal Free Energy:-1006.94507	
25	
X Y Z	
-4.48158300 -1.76730100 0.4325050 -3.90332600 1.04881100 0.1208680 -2.87630900 0.07760000 0.1734140 -3.54939000 2.36591500 -0.0697450 -2.20562100 2.72797800 -0.1819610 -1.24702100 1.72704700 -0.1060340 1.33608400 -2.08465600 -1.3221830 0.21645000 2.03348200 -0.1083040 0.71249700 3.33223800 -0.1196670 2.34365100 1.12394300 0.1838290 2.09547900 3.50115500 -0.0196170 2.92538400 2.41251700 0.1499370 4.44090900 0.03335900 0.7892960 -5.05615100 -1.55749300 -0.4789000 -4.41370600 -2.84797700 0.5534160 -5.03175200 -1.36403300 1.2903740 -4.32080500 3.12774200 -0.1258670 -4.32080500 3.12774200 -0.1258670 -1.92659600 3.76309800 -0.3192860 0.05961100 4.19126600 -0.1863180 2.45175100 -0.76235300 0.8105590 2.51836700 4.50084600 -0.0404250 4.77861200 -0.98554100 0.9785190 3.99271700 2.53700400 0.2813660	
5.04301900 0.43797800 0.63620200 1.6025200 1.6025200	00
-3.14412600 -1.23162500 0.3678160) ()) ()

ССССССССССИ ННННННННН

H N

N	-1.57898900	0.42563100	0.04035200
N	1.02334700	0.96717300	-0.02967400
N	3.04403900	-0.00871200	0.42898900
0	2.11445800	-2.73889500	-1.86804700
Ru	0.08353900	-1.06481000	-0.46730700
0	0.86756800	-1.55553600	1.31875800
С	0.84116800	-2.89859500	1.68346700
Н	1.27204300	-3.00131100	2.69091600
Н	-0.18060800	-3.30836000	1.71622700
Н	1.42594300	-3.54061900	1.00204600

I3_in

SCF Done	:-1007.20511
SCF Done for solvent	:-1007.22481
Zero-point correction	:0.311292
Total Electronic Energy	:-1006.89382
Total Thermal Energy	:-1006.87214
Total Thermal Free Energy	:-1006.94526

	Х	Y		Ζ
-4.4	48353500	-1.764670	0.41	179500
-3.9	90032700	1.054163	0.13	215600
-2.8	37561900	0.079496	0.16	117900
-3.5	54404500	2.3734470	0.03	758400
-2.2	20006800	2.733508	00 -0.15	371000
-1.2	24385100	1.728728	00 -0.10	340700
1.3	35542900	-2.081384	00 -1.30	782200
0.2	22034700	2.031802	00 -0.11	170700
0.7	72136800	3.328550	00 -0.13	616900
2.3	34396900	1.117532	0.19	018800
2.2	10506500	3.493166	0.03	769300
2.9	93094900	2.403311	0.14	415800
4.4	43516200	0.020624	0.80	909900
-5.0	07133300	-1.538536	00 -0.48	704800
-4.4	41713800	-2.847392	0.51	383400
-5.0	01937800	-1.373930	00 1.28	451900
-4.9	93678300	0.761639	0.23	820200
-4.3	31357900	3.138511	0.07	303800
-2.3	35285600	-1.858825	0.23	270300

ССССССССССННННН

Н	-0.78767400	-2.38213000	-0.68587800
Н	-1.91898400	3.77059500	-0.27048300
Н	0.07202300	4.18931400	-0.21477800
Н	2.44142600	-0.76628600	0.82727700
Н	2.53184000	4.49091300	-0.07035600
Н	4.76363100	-0.99770600	1.01655300
Н	3.99887700	2.52466300	0.27403200
Н	5.04161800	0.40566700	-0.01760100
Н	4.63143000	0.63721500	1.69796800
Ν	-3.14578000	-1.23197600	0.33429900
Ν	-1.57830300	0.42608800	0.02502000
Ν	1.02381000	0.96350300	-0.02508400
Ν	3.03830200	-0.01559700	0.44883000
0	2.15799000	-2.72209300	-1.83420400
Ru	0.08377000	-1.06450100	-0.47706000
0	0.83644100	-1.55369000	1.32267800
С	0.79549300	-2.89546200	1.69011700
Н	1.21454000	-2.99917100	2.70243200
Н	-0.22974200	-3.29743400	1.71264900
Н	1.38254100	-3.54381000	1.01680400

I4_in

SCF Done	:-1007.21067
SCF Done for solvent	:-1007.22657
Zero-point correction	:0.30945
Total Electronic Energy	:-1006.90123
Total Thermal Energy	:-1006.88009
Total Thermal Free Energy	:-1006.95097

Atom	Х	Y	Z
С	-4.60571100	-1.45986500	0.05181600
С	-3.76535100	1.28592900	0.15063500
С	-2.82853600	0.23192900	0.09382300
С	-3.30287800	2.58173700	0.07077200
С	-1.93819000	2.82844400	-0.06204600

С	-1.06961000	1.74334300	-0.09754800
С	1.33028200	-2.30355400	-0.98875200
С	0.40789500	1.93765800	-0.17212300
С	0.99274700	3.19292200	-0.30952800
С	2.47830900	0.91557000	0.12675900
С	2.38352100	3.27707000	-0.25956900
С	3.14384600	2.15105000	-0.01510000
С	4.52641200	-0.25847100	0.78125100
Н	-5.09150200	-1.06356300	-0.85012900
Н	-4.65570800	-2.54809300	0.02091100
Н	-5.17170900	-1.12325000	0.92671100
Н	-4.82182100	1.07300800	0.24747000
Н	-4.00350200	3.40979800	0.10956100
Н	-2.50799400	-1.72364900	-0.16699300
Н	-0.23952700	-0.84240900	-1.87342500
Н	-1.56944800	3.84265500	-0.11774900
Н	0.39739900	4.08325600	-0.45479000
H	2.51657900	-0.92818400	0.87934000
Н	2.87039100	4.23968800	-0.38014100
Н	4.80500600	-1.28021800	1.03789500
Н	4.22011600	2.21126600	0.08237300
Н	5.13441500	0.04770300	-0.07557600
Н	4.76700100	0.39507300	1.63148000
N	-3.21833500	-1.06984700	0.15121900
N	-1.50663900	0.47160100	-0.00824900
N	1.14724700	0.82714800	-0.04074000
N	3.12322300	-0.24128300	0.43874700
0	2.09819300	-3.03896100	-1.43241700
Ru	0.05972000	-1.13412700	-0.36034100
0	0.55716300	-1.36255900	1.83193700
С	-0.27513000	-2.26808000	1.54805400
Н	-1.33825300	-2.13068300	1.79363100
Н	-0.92016300	-2.29199300	-0.83744600
Н	0.05406700	-3.30405400	1.38819000

SCF Done	:-1007.17454
SCF Done for solvent	:-1007.19553
Zero-point correction	:0.30848
Total Electronic Energy	:-1006.86606
Total Thermal Energy	:-1006.84472
Total Thermal Free Energy	:-1006.91652

Atom	Х	Y	Z
С	-4.53973400	-1.75920300	0.00633700
С	-3.88107400	1.03413200	0.21970300
С	-2.88552400	0.04486400	0.10735500
С	-3.49776700	2.36085400	0.18719400
С	-2.15591400	2.70072600	0.03860700
С	-1.22441100	1.67115100	-0.04403500
С	1.47696400	-1.91973900	-1.24406600
С	0.23573800	1.91739700	-0.13531600
С	0.78342200	3.19076900	-0.19683200
С	2.34887400	0.93567900	0.11787200
С	2.17302600	3.31595200	-0.17320200
С	2.96447300	2.20279100	0.01038400
С	4.41460700	-0.17035900	0.76893600
Н	-5.07257800	-1.35699600	-0.86634900
Н	-4.52556600	-2.84652800	-0.06468900
Н	-5.09653000	-1.49095900	0.90903800
Н	-4.92239900	0.75613300	0.31506500
Н	-4.24846900	3.14023300	0.26965400
Н	-2.47105700	-1.84500300	-0.37769100
Н	-0.77320100	-1.40401700	-1.81994000
Н	-1.85153100	3.73753300	0.00561700
Н	0.15189600	4.06587200	-0.25930900
Н	2.37489700	-0.84607100	0.96240000
Н	2.63005000	4.29708100	-0.25224900
Н	4.72107500	-1.17862100	1.04681600
Н	4.03877800	2.28812300	0.10967400
Н	5.00940700	0.13320300	-0.09844700
Н	4.64533500	0.50690400	1.60362700

Ν	-3.17464600	-1.28868100	0.09719500
Ν	-1.58525300	0.37649600	0.01222100
Ν	1.01563900	0.81456700	-0.10227700
Ν	3.00830000	-0.19845500	0.44069100
0	2.31424400	-2.42869200	-1.84396400
Ru	0.08111600	-1.01954100	-0.39956800
0	0.82333700	-1.27980400	1.55929100
С	0.54495700	-2.59112600	1.88576600
Н	0.35903000	-2.70637300	2.96500300
Н	-0.38211100	-2.95705700	1.38159900
Н	1.34910000	-3.29648800	1.60152100

TS2_in

:-1007.18695
:-1007.20627
:0.307315
:-1006.87963
:-1006.85869
:-1006.92958

ССССССССССНННННН

Х	Y	Z
4.58309400	-1.47361500	-0.21207400
3.77575800	1.28164200	-0.08929800
2.82672900	0.24005800	-0.15573100
3.32663400	2.56925800	0.11658700
1.96193200	2.82121900	0.23603300
1.08261200	1.75120300	0.11752800
-1.40121300	-1.99048100	1.27108500
-0.39251700	1.94372900	0.13285600
-0.98623700	3.19875100	0.09599400
-2.44287200	0.87733200	-0.19542000
-2.37446600	3.26816100	-0.02032900
-3.11555000	2.11747700	-0.19292200
-4.43951900	-0.33404600	-0.92495800
5.05651400	-1.16614000	0.73032200
4.62345700	-2.56042800	-0.28272300
5.16562700	-1.06359800	-1.04341800
4.83262500	1.06528300	-0.17342700
4.03933200	3.38396800	0.19517400
2.49130700	-1.72748000	-0.02771900
0.35505600	-0.70490600	1.82669600

H	1.60247000	3.82357100	0.42176900
Н	-0.39298600	4.10179100	0.12757000
Н	-2.43266200	-1.01177100	-0.85426800
Н	-2.86992500	4.23378200	-0.02769600
Н	-4.69731300	-1.36762500	-1.15347200
Н	-4.18383600	2.15862200	-0.35993300
Н	-5.10424100	0.00856000	-0.12605100
Н	-4.62097100	0.27837700	-1.81895700
N	3.20170500	-1.06039300	-0.30230700
N	1.50673100	0.48773400	-0.08054500
N	-1.12592400	0.81499000	0.09384600
N	-3.06105700	-0.29588800	-0.49136900
0	-2.17102100	-2.54011100	1.93019600
Ru	-0.11044800	-1.04994600	0.35447200
0	-0.43508900	-1.79937800	-1.72249400
С	0.31090000	-2.76195800	-1.26001800
Н	1.31896100	-2.87641300	-1.69690300
Н	0.74548500	-2.59866000	0.02119600
Н	-0.16221000	-3.74088700	-1.06991700

12. Copies of ¹H and ¹³C NMR Spectra of the Products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10