Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Bi-functional Ru/Ca₃Al₂O₆-CaO catalyst-CO₂ sorbent for the production of high purity hydrogen via the sorption-enhanced steam methane reforming

Sung Min Kim,^a Paula M. Abdala,^a Davood Hosseini,^a Andac Armutlulu,^a Tigran Margossian,^b Christophe Copéret,^b and Christoph Müller^{*a}

^a Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland ^b Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland

> *Corresponding author. Tel.: +41 44 632 3440. E-mail address: muelchri@ethz.ch (Prof. Christoph Müller)

Contents

Table S1.	EXAFS fitting results of calcined materials at Ru K-edge
Table S2.	Textural properties of bifunctional Ru-CaO after repeated carbonation and regeneration (in calcined form)
Table S3.	Physicochemical properties of bifunctional Ru-CaO after 10 cycles of SE-SMR and regeneration
Figure S1.	N ₂ physisorption isotherm and BJH pore size distribution of Ru/lime, Ru/CaO and Ru/Ca ₃ Al ₂ O ₆ -CaO calcined at 850 °C
Figure S2.	STEM EDX mapping of calcined Ru/Ca3Al2O6-CaO, and calcined and reduced CaRuO3
Figure S3.	XRD of the reference RuO ₂ (Sigma-aldrich), calcined Ru/Al ₂ O ₃ , calcined CaRuO ₃ and reduced CaRuO ₃
Figure S4.	Fourier-transform of k ³ -weighted EXAFS and fitting of the calcined reference and synthetic bifunctional materials7
Figure S5.	CaO conversion in the kinetically-controlled carbonation regime as a function of pore volume
Figure S6.	Off-gas composition during the 1 st cycle for Ca-Ni-ex-Htlc and the breakthrough curves for H ₂ and CH ₄ in the 1 st , 5 th and 10 th cycle
Figure S7.	CO ₂ uptake under SE-SMR-relevant conditions (carbonation: 550 °C 50 ml/min of 20 % CO ₂ /N ₂ , 2 h, and regeneration:750 °C, 50 ml/min of N ₂ , 15 min) as a function of number of carbonation-regeneration cycles
Figure S8.	N ₂ physisorption isotherm and BJH pore distribution for Ru/lime, Ru/CaO and Ru/Ca ₃ Al ₂ O ₆ -CaO freshly calcined and after 10 cycles of SE-SMR and regeneration.

	EAT 5 Intilly	icouito of cal	unicu materia	ais at itu K-euge		
Materials	Coordination	Coordination	R [Å]	σ^2 [Å ²]	ΔE [eV]	R-factor
	shell	number	[]	- []	[]	
	Ru-O	2	1.94 ± 0.02	0.0030 ± 0.0003		0.027
	Ru-O	4	1.98 ± 0.02	0.0030 ± 0.0003	-3.73 ± 1.48	
RuO ₂	Ru-Ru	2	3.13 ± 0.02	0.0029 ± 0.0003		
	Ru-O	4	3.22 ± 0.19	0.0029 ± 0.0003		
	Ru-Ru	8	3.54 ± 0.01	0.0029 ± 0.0003		
	Ru-O	2	1.94 ± 0.03	0.0030 ± 0.0003		
	Ru-O	4	1.98 ± 0.02	0.0030 ± 0.0003		
Ru/Al_2O_3	Ru-Ru	2	3.11 ± 0.01	0.0035 ± 0.0003	$\textbf{-3.61} \pm 1.39$	0.025
	Ru-O	4	3.17 ± 0.23	0.0035 ± 0.0003		
	Ru-Ru	8	3.54 ± 0.01	0.0035 ± 0.0003		
	Ru-O	6	2.00 ± 0.01	0.0034 ± 0.0004		
	Ru-Ca	2	3.14 ± 0.02	0.0040 ± 0.0023		
	Ru-Ca	2	3.26 ± 0.02	0.0040 ± 0.0023	1 51 1 1 10	0.000
CaRuO ₃	Ru-Ca	2	3.37 ± 0.02	0.0040 ± 0.0023	-1.71 ± 1.42	0.028
	Ru-Ca	2	3.61 ± 0.02	0.0040 ± 0.0023		
	Ru-Ru	5	3.84 ± 0.01	0.0037 ± 0.0011		
	Ru-O	6	1.96 ± 0.03	0.0070 ± 0.0004		
	Ru-Ca	2	3.12 ± 0.01	0.0075 ± 0.0034		
	Ru-Ca	2	3.31 ± 0.07	0.0075 ± 0.0034		0.021
Ru/lime	Ru-Ca	2	3.31 ± 0.07	0.0075 ± 0.0034	-3.13 ± 1.27	
	Ru-Ca	2	3.47 ± 0.14	0.0075 ± 0.0034		
	Ru-Ru	5	3.86 ± 0.01	0.0131 ± 0.0025		
	110 110	C				
	Ru-O	6	1.95 ± 0.04	0.0067 ± 0.0004		
	Ru-Ca	2	3.10 ± 0.02	0.0086 ± 0.0061		0.020
	Ru-Ca	2	3.10 = 0.02 3.23 ± 0.01	0.0086 ± 0.0061		
Ru/CaO	Ru-Ca	2	3.23 ± 0.01 3.31 ± 0.06	0.0086 ± 0.0061	-3.60 ± 1.28	
	Ru-Ca	2	3.31 ± 0.00 3.42 ± 0.19	0.0080 ± 0.0001 0.0086 ± 0.0061		
		5	3.42 ± 0.17 3.87 ± 0.03	0.0030 ± 0.0001 0.0175 ± 0.0049		
	Ku-Ku	5	5.07 ± 0.05	0.0173 ± 0.0049		
	Ru O	6	1.97 ± 0.02	0.0001 ± 0.0006		
	Ru-O	0	1.97 ± 0.02	0.0091 ± 0.0000		
	Ru-Ca	2	3.12 ± 0.01	0.0088 ± 0.0042		
Ru/Ca3Al2O6-CaC) Ru-Ca	2	3.32 ± 0.08	0.0000 ± 0.0042	$\textbf{-3.47} \pm 1.53$	0.027
	Ku-Ca	2	3.32 ± 0.03	0.0088 ± 0.0042		
	Ku-Ca	2	3.42 ± 0.18	0.0088 ± 0.0042		
	ки-ки	3	3.70 ± 0.08	0.0091 ± 0.0006		

 Table S1.
 EXAFS fitting results of calcined materials at Ru K-edge

		N ₂ physisorption				
Catalyst	Cycles	S_{BET} [m ² /g]	V _{Pore} [cm ³ /g]	D _{pore} [nm]		
	2	6	0.07	19		
Ru/lime	10	1	0.01	1.8		
Dec/C=O	2	8	0.10	1.9		
Ru/CaO	10	2	0.05	1.9		
Ru/Ca ₃ Al ₂ O ₆ -CaO	10	18	0.23	2.0		

Table S2.	Textural	properties	of	bifunctional	Ru-CaO	after	repeated	carbonation	and
	regenerat	ion (in calci	ined	form).					

Table S3.Physicochemical properties of bifunctional Ru-CaO after 10 cycles of SE-SMR and
regeneration.

]	N ₂ physisorption	1	Dorticle size ^[a]	H. chamisorntion ^[b]		
Catalyst	S_{BET} [m ² /g]	V _{Pore} [cm ³ /g]	D _{pore} [nm]	[nm]	II2 chem [μmo	[µmol _{Ru} /g _{cat}]	
Ru/lime	5	0.06	1.8	34 ± 4	2.1	(0.7%)	
Ru/CaO	6	0.07	1.9	23 ± 4	7.2	(2.4%)	
Ru/Ca ₃ Al ₂ O ₆ -CaO	18	0.21	1.8	8 ± 2	31.5	(10.6%)	

[a] average Ru particle size as determined by TEM, and [b] the quantity of surface Ru was calculated via H_2 chemisorption using a stoichiometry factor of 1.0 for H/Ru,³⁰⁻³² the parenthesis give the Ru dispersion

Figure S1. (a) N₂ physisorption isotherm and (b) BJH pore size distribution of Ru/lime, Ru/CaO and Ru/Ca₃Al₂O₆-CaO calcined at 850 °C.

Figure S2. STEM EDX mapping of calcined Ru/Ca₃Al₂O₆-CaO, and calcined and reduced CaRuO₃.

Figure S3. XRD of the reference RuO₂ (Sigma-aldrich), calcined Ru/Al₂O₃, calcined CaRuO₃ and reduced CaRuO₃: (\Box) RuO₂, (\triangle) γ -Al₂O₃, (\blacklozenge) Ru, and (\blacksquare) CaO.

Figure S4. synthetic bifunctional materials.

Figure S5. CaO conversion in the kinetically-controlled carbonation regime as a function of pore volume: (■) 1st, (●) 2nd, (▲) 5th and (◆) 10th cycle.

Figure S6. (a) Off-gas composition during the 1^{st} cycle for Ca-Ni-ex-Htlc and (b) the breakthrough curves for H₂ and CH₄ in the 1^{st} , 5^{th} and 10^{th} cycle.

Figure S7. CO₂ uptake under SE-SMR-mimicking conditions (carbonation: 550 °C using 50 ml/min of 20 % CO₂/N₂, 2 h, and regeneration:750 °C, 50 ml/min of N₂, 15 min) as a function of number of carbonation-regeneration cycles. The solid line gives the theoretical CO₂ uptake of pure CaO, i.e., 0.78 g_{CO_2}/g .

regeneration.