Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Selective synthesis of 1,3-propanediol from glycidol over carbon film encapsulated Co catalyst

Yanyan Sun,^a Zhongshun Cai,^a Xuewen Li,^a Ping Chen,^a Zhaoyin Hou^{*a, b}

Address

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, PR China

^b Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310028, PR China

Entry	Catalyst	Active metal loading	Particle size (nm)		
		(wt. %) ^a	XRD^b	TEM ^c	
1	Co@NC	58.90	23.1	25.6	
2	Co/AC	15.85	10.2	11.0	
3	Co@NG-ZIF	41.40	12.1	13.3	
4	Co/H-BEA	14.74	_	-	
5	Co/MCM-41	13.71	_	-	
6	Co/ZnO	14.88	_	-	
7	Co/MgO	13.29	_	-	
8	Co/Al ₂ O ₃	13.49	_	-	
9	Co/MWCNTs	14.90	_	-	
10	Ni/MWCNTs	14.92	_	-	
11	Cu/MWCNTs	14.89	_	-	
12	Pt/ MWCNTs	3.57	_	-	
13	Pd/MWCNTs	3.78	_	-	
14	Ru/MWCNTs	3.80	_	-	

Table S1 Loading amount and particle size of active metals.

^a Metal contents were estimated by ICP-AES.

^b Calculated according to the Scherrer formula.

^{*c*} Derived from the TEM images.

^{*} Corresponding author. Tel./Fax: +86 571 88273283.

^{*} Email Address: <u>zyhou@zju.edu.cn</u> (Z. Hou)

Fig. S1 Coordination environment of Co₂(bdc)₂(ted)^[1].

Fig. S2 SEM image of Co₂(bdc)₂(ted).

Fig. S3 N_2 adsorption-desorption isotherm of $Co_2(bdc)_2(ted)$.

Fig. S4 TG curve of Co₂(bdc)₂(ted).

Fig. S5 Time courses of glycidol hydrogenation over (a) Co@NC, (b) Co/AC at 120 °C, and (c) Co@NG-ZIF at 100 °C.

Reaction conditions: 0.3 g glycidol in 10.0 mL ethanol, Co 9.8 wt.%, 2.0 MPa H₂.

Fig. S6 Hydrogenation of glycidol under varied H_2 pressure. Reaction conditions: 0.3 g glycidol in 10.0 mL ethanol with 9.8 wt.% of Co (Co@NC catalyst), 120 °C, 5 h.

Fig. S7 Hydrogenation of glycidol over Co@NC at (a) 100 °C, (b)120 °C and (c) 140 °C.

Reaction conditions: 0.3 g glycidol in 10.0 mL ethanol with 9.8 wt.% of Co, 2.0 MPa H_2 .

Fig. S8 Hydrogenation of glycidol with varied dosage of catalyst. Reaction conditions: 0.3 g glycidol in 10.0 mL ethanol with different amount of Co@NC catalyst, 2.0 MPa H_2 , 140 °C, 4 h.

Catalyst	Conv.	Selectivity (%)				1,3-PDO	Ref.
	(%)	1,3-PDO	1,2-PDO	1-PO	Others ^a	Yield (%)	
Pd/C	96.1	<1	93.1	-	6.7	<0.96	[2]
Pd/C+A15	100±8	-	>99	-	-	>99	[3]
Ni(40)/Sap	100	26	53	-	21	26	[4]
NiRe(7)/MS	98	47	38	7	6	46.1	[5]
Co@NC	83.6	60.3	10.3	29.4	-	50.4	This work ^b

Table S2 Results of glycidol hydrogenation in those pioneering works and this work.

^{*a*}Oligomers of glycidol.

^b Data was obtained at 140 °C and 4 h (Fig. S7 (c)).

Fig. S9 TEM image of recycled Co@NC.

Fig. S10 XRD pattern of recycled Co@NC.

Entry	Substrate	Catalyst	Conversion $(0/)$	Product selectivity	
Enuy	Substrate	Catalyst	Conversion (%)	Compound	(%)
1	но Он	Co@NC	NR^b	_	_
2		Co/AC	NR	_	_
3		Co@NG-ZIF	NR	_	_
4	НО	Co@NC	NR	_	_
5	 OH	Co/AC	NR	_	_
6		Co@NG-ZIF	NR	_	_
7		Co@NC	93.8	1-propanol	86.8
	\diamond			propane	13.2
8		Co@NG-ZIF	95.0	1-propanol	13.0
				propane	87.0

Table S3 Hydrogenation of PDOs and propylene oxide over three Co catalysts ^a.

 a Reaction conditions: 0.3 g substrate in 10.0 mL ethanol with 9.8 wt.% of Co, 2.0 MPa H₂, 140 °C, 4 h. b NR: no reaction.

Fig. S11 TEM images of (a, b) Co/AC, and (c, d) Co@NG-ZIF (the scale bar in Fig. b was 20 nm).

Entry		Surface atom composition $(\%)^a$				
	Catalyst —	С	0	Ν	Co	
1	Co@NC	80.2	14.1	1.1	4.6	
2	Co@NG-ZIF	79.6	12.4	5.8	2.2	

Table S4 Surface elemental composition of different Co-based catalysts.

^a Surface composition determined from XPS.

References

- 1. D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem., 2004, 116, 5143–5146.
- 2. R. Cucciniello, C. Pironti, C. Capacchione, A. Proto and M. Di Serio, *Catal. Commun.*, 2016, 77, 98–102.
- 3. M. Ricciardi, D. Cespi, M. Celentano, A. Genga, C. Malitesta, A. Proto, C. Capacchione and R. Cucciniello, *Sustainable Chem. Pharm.*, 2017, **6**, 10–13.
- 4. F. B. Gebretsadik, J. Ruiz-Martinez, P. Salagre and Y. Cesteros, *Appl. Catal. A: Gen.*, 2017, **538**, 91–98.
- 5. F. B. Gebretsadik, J. Llorca, P. Salagre and Y. Cesteros, *ChemCatChem*, 2017, 9, 3670–3680.