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S.1 Linear transition state energy scaling relations

Fig S1. Linear transition state energy scaling relations for the dissociation of (a) H2 and (b) DMO 

and the hydrogenation of (c) acyl, (d) IM_1, (e) IM_3, and (f) methoxyl. 
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S.2 Microkinetic Modelling

The microkinetic model is constructed under the mean-field approximation. Rate expressions have 

the form:
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where  is the rate of elementary step i,  are the gas pressures in the initial/final state of step i, ir /IS FSP

and  are the coverages of intermediates in the initial/final state of step i. The coverages are /IS FS

normalized such that the sum of all coverages for each type of adsorption site is constrained to unity. 

The reaction rate constants  are computed using transition-state theory:/ ,f r ik
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where , ,  and  are Boltzmann’s and Planck’s constants, ,act i TS ISG G G   ,rxn i FS ISG G G   Bk h

respectively, and T is the temperature in Kelvin. ,  and  are the Gibbs free energies of ISG FSG TSG

the initial, final, and transition states, respectively. Gibbs free energies are computed as the DFT 

formation energy plus a thermodynamic correction.

The rate expressions are used to determine the rate of change for all coverages as follows:
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where t is time,  is the set of reactions where intermediate j appears in the initial/final state, /IS FSr

and  is the stoichiometry of intermediate j in reaction n.ns

The Gibbs free energy of gas-phase species A [DMO(g), MG(g), H2(g), CH3OH(g)] at temperature 

T and pressure P is given by
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where  is the total energy determined by DFT calculations.  is the zero-point energy, AtotalE , ZPEE

which is calculated by
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where  is Avogadro’s number,  is Plank’s constant,  is the frequency of the normal mode, AN h i

and  is the number of atoms involved in the system.  is the enthalpy change, which N )0( TH  o

is assumed to be zero.  is the entropy changer per degree, which is assumed to be 0.00135 ( )S T

eV/K for hydrogen gas and 0.002 eV/K for other gases.

The Gibbs free energy for a species A adsorbed on Ni surface is calculated as
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where the enthalpy change is replaced by the change of internal energy. 

The standard internal energy change of adsorption is calculated by
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The standard entropy change ( ) of adsorption is calculated byoS
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