Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information

ZnNb₂O₆ fibre surface as an efficiently product-selective controller for near-UV-light-induced nitrobenzene reduction reaction⁺

Jie Wang,^{ab} Zhenyu Ge,^c Linjuan Pei,^{ab} Peng Kong,^a Ruiyi wang,^a Pengqi Zhu,^{ab} Meixian Liu,^{ab} Xianmo Gu^{*a} and Zhanfeng Zheng^{*ab}

^aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^cSchool of Material Science and Engineering, Shandong University, Jinan 250100, China.

*Corresponding authors:

E-mail addresses: zfzheng@sxicc.ac.cn (Z. F. Zheng); guxm@sxicc.ac.cn (X. M. Gu)

Table of contents

- 1. Fig. S1 The EDX spectrum of $ZnNb_2O_6$ attached to TEM
- 2. Fig. S2 The TEM and HRTEM images of different position of ZnNb₂O₆ fibre.
- Fig. S3 (a) UV-Vis absorption spectrum of ZnNb₂O₆ and optical spectrum of near-UV light and (b) Valenceband XPS spectrum, and proposed band structure of ZnNb₂O₆.
- 4. Fig. S4 The stability of ZnNb₂O₆ in five cycles and (b) the XRD patterns of the ZnNb₂O₆ catalyst before and after the reaction.
- 5. Fig. S5 Kinetic plots for nitrobenzene reduction under near-UV light irradiation without $ZnNb_2O_6$ as catalyst at 40 °C (a) and 60 °C (b). Kinetic plots for nitrobenzene reduction under near-UV light irradiation with $ZnNb_2O_6$ as catalyst at 40 °C (c) and 60 °C (d). The effect of temperature on the nitrobenzene reduction reaction without (e) or with $ZnNb_2O_6$ (f).
- Fig. S6 (a) Kinetic plots of -ln(1-x/a) versus reaction time t with ZnNb₂O₆ catalyst at different temperature: 40, 60 and 80 °C. (b) Plot of the lnk versus 1/T according to the Arrhenius equation.
- 7. Table S1 Product distribution over modulation of PHA selectivity.
- 8. Fig. S7 In situ FT-IR spectra recorded during isopropyl alcohol adsorption on ZnNb₂O₆ at 80 °C.
- Fig. S8 (a) FT-IR absorbance spectra recorded during isopropyl alcohol and nitrobenzene adsorption on ZnNb₂O₆.
- 10. Fig. S9 *In situ* FT-IR spectra about the time profiles of the substrates under the near-UV light irradiation.
- 11. Fig. S10 The top (a) and side (b) views of the optimized the (040) surface of $ZnNb_2O_6$.
- 12. Table S2. Surface density of acidic and basic sites and comparison of nitrobenzene conversion and aniline yield of different catalysts.

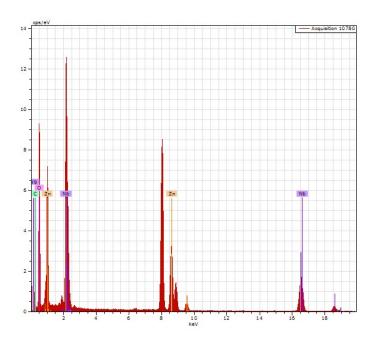


Fig. S1 The EDX spectrum of $ZnNb_2O_6$ attached to TEM. The Zn and Nb atomic ratio is 1:1.96.

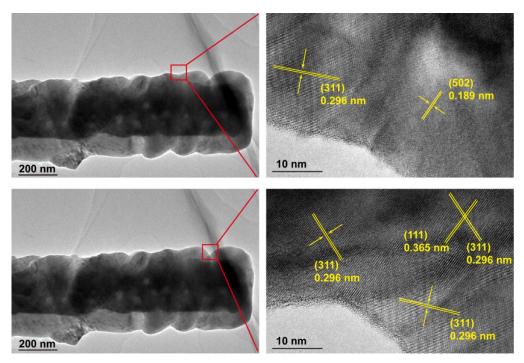
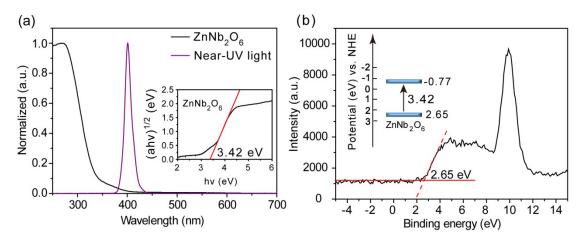



Fig. S2 The TEM and HRTEM images of different position of $ZnNb_2O_6$ fibre.

Fig. S3 (a) UV-Vis absorption spectrum of $ZnNb_2O_6$ (The inset is the function of photon energy) and optical spectrum of near-UV light and (b) Valence-band XPS spectrum and proposed band structure of $ZnNb_2O_6$.

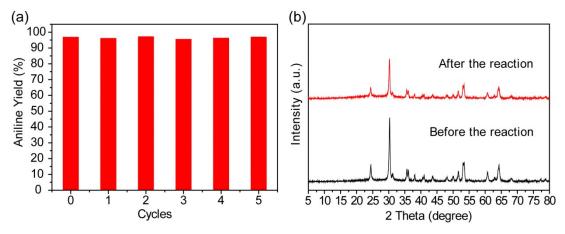
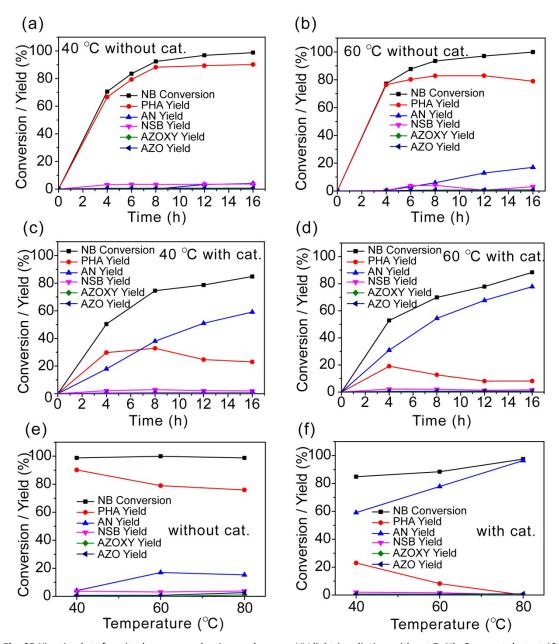
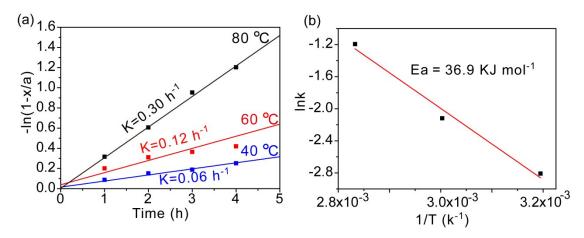
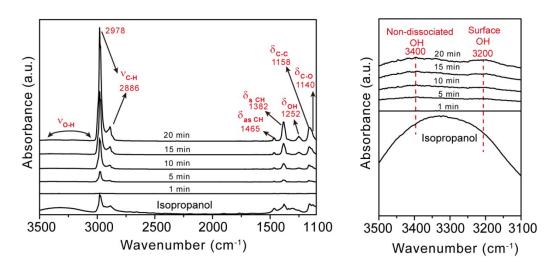
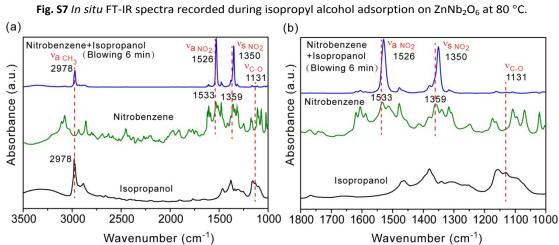




Fig. S4 The stability of $ZnNb_2O_6$ in five cycles and (b) the XRD patterns of the $ZnNb_2O_6$ catalyst before and after the reaction.

Fig. S5 Kinetic plots for nitrobenzene reduction under near-UV light irradiation without $ZnNb_2O_6$ as catalyst at 40 °C (a) and 60 °C (b). Kinetic plots for nitrobenzene reduction under near-UV light irradiation with $ZnNb_2O_6$ as catalyst at 40 °C (c) and 60 °C (d). Reaction conditions: 30 mg of catalyst (if applicable), near-UV light (380 - 420 nm, peak at 399 nm, 100 mW cm⁻²), 2 ml of 0.05 M nitrobenzene in isopropyl alcohol solution. The effect of temperature on the nitrobenzene reduction reaction without (e) or with $ZnNb_2O_6$ (f). The experiments are proceeded for 16 h at 40 °C, 60 °C and 80 °C, respectively.

Fig. S6 (a) Kinetic plots of $-\ln(1-x/a)$ versus reaction time t with $ZnNb_2O_6$ catalyst at different temperature: 40, 60 and 80 °C. (b) Plot of the lnk versus 1/T according to the Arrhenius equation.


Calculation details of activation energy:


At first, the conversions for phenylhydroxylamine to aniline were counted at different periods of reaction time in 5 h. According to the first-order rate law equation,¹ the kinetic plots of $-\ln(1-x/a)$ versus reaction time t make several straight lines at different temperature: 40, 60 and 80 °C (x is the productive amounts of aniline, a is the amounts of phenylhydroxylamine by direct irradiation for 6 h with near-UV light). The values of the slopes calculated from the kinetic plots, as shown in Fig. S6a, are equal to the value of the rate constant k. According to the Arrhenius equation, one straight line of lnk versus (1/T) was obtained (Fig. S6b), from which the activation energy of hydrogenation of phenylhydroxylamine with $ZnNb_2O_6$ could be calculated from the value of the slope value (-Ea/R), being 36.9 KJ mol⁻¹.

Entry	NB Con. (%)	РНА	AN	NSB	AZOXY	AZO		
		Yield (%)						
Solution-A	99	76	15	4	2	3		
1 ª	99	24	31	3	41	1		
2 ^b	99	28	38	3	10	21		
3°	99	70	17	5	1	7		

Table S1 Product distribution over modulation of PHA selectivity.

The reaction was conducted under argon atmosphere at 80 °C using 2 ml of isopropyl alcohol solution with 0.1 mmol of nitrobenzene under near-UV light irradiation (Light intensity: 100 mW cm⁻²) for 16 h in the first reaction stage (designated as Solution-A). In the second reaction stage, 30 mg of ZnNb₂O₆ was added to Solution-A in glove box. After that, the reaction was conducted continually for 16 h under ^adark and ^blight situation; ^cthe Solution-A was conducted continually for 16 h under near-UV light irradiation.

Fig. S8 (a) FT-IR absorbance spectra recorded during isopropyl alcohol and nitrobenzene adsorption on $ZnNb_2O_6$. (b) The amplified spectra for (a) at 1800-1000 cm⁻¹. The standardized spectra of isopropyl alcohol or nitrobenzene were obtained based on KBr background at roommate. The spectra of isopropyl alcohol and nitrobenzene were obtained by blowing the closed cell for 6 min after 10 μ L of 0.05 M nitrobenzene in isopropyl alcohol was added to the centre of the situ cell at 80 °C.

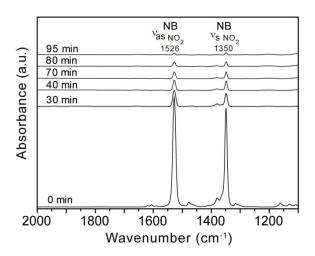


Fig. S9 In situ FT-IR spectra about the time profiles of the substrates under the near-UV light irradiation. (a) (b)

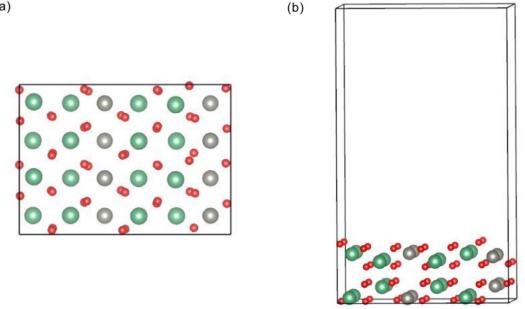


Fig. S10 The top (a) and side (b) views of the optimized the (040) surface of ZnNb₂O₆. Red ball is O; green ball is

Nb; gray	ball	is	Zn.
----------	------	----	-----

Entry	Catalysts	Acidic sites	Basic sites	Ratio of	NB con.	AN Yield
		(µmol/m²)	(µmol/ m²)	acidic to	(%)	(%)
1 ª	ZnNb ₂ O ₆	0.30	0.02	15.00	97	96
2 ª	Nb ₂ O ₅	0.60	0.34	1.76	80	78
3 ^a	ZnO	1.01	0.84	1.20	99	10
4 ^a	$Acid-Al_2O_3$	6.05	1.25	4.84	96	91
5 ^a	$Base-Al_2O_3$	5.25	1.56	3.37	97	66
6 ^b	_	_	_	_	99	15

 Table S2.
 Surface density of acidic and basic sites and comparison of nitrobenzene conversion and aniline yield of different catalysts.

^aConditions: 30 mg catalyst, 399 nm near-UV light (380-420 nm, 100 mW/cm²), 80 °C, 2 ml of 0.05 mol/L nitrobenzene in isopropyl alcohol solution, 16 h. The Nb₂O₅ was obtained by the calcined H-niobate at 700 °C for 3 h. ^bThere is no catalyst in the reaction system.

1. S. Challagulla, S. Payra, C. Chakraborty and S. Roy, *Phys. Chem. Chem. Phys.*, 2019, **21**, 3174-3183.