Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

1 Supporting Information

2

- 3 Figure S-1: TEM images of the double FSP synthesised (a, b) CAL₅₋₁₁ and (c, d) CAL₁₅₋₁₁ with energy
- 4 dispersive X-ray spectroscopy (EDS) mapping. Red represents Co atoms and yellow represents Al

5 atoms.

8 Figure S-2: X-Ray Diffraction patterns of CAL_{x-11} and CAL_{x-18} materials with Rietveld Refinement,

9 showing the observed pattern, calculated pattern based on phase identification, and the difference
10 between the observed and calculated pattern

11Table S-1: Approximate crystallite sizes of Co_3O_4 and Al_2O_3 , calculated from XRD data using the12Scherrer equation or via the Rietveld Refinement

	Crystallite Size (nm)				
Sample	Co ₃ O ₄ (Scherrer)	Al ₂ O ₃ (Scherrer)	Al ₂ O ₃ (Rietveld)		
CAL ₀₋₁₁	8.8	7.7	9.0		
CAL ₅₋₁₁	6.5	10.5	13.9		
CAL ₁₀₋₁₁	7.1	10.1	15.6		
CAL ₁₅₋₁₁	5.5	11.2	15.2		
CAL ₀₋₁₈	9.2	7.3	10.2		
CAL ₅₋₁₈	6.9	9.3	14.9		
CAL ₁₀₋₁₁	6.1	9.8	15.2		
CAL ₁₅₋₁₈	5.9	10.0	13.4		

Figure S-3: La L₃-edge XANES of CAL₅₋₁₁, synthesised via double FSP, a La₂O₃ control prepared via
solution combustion and LaAlO₃ and LaCoO₃ perovskites reported by Asakura et al.¹

temperature runge of 50-000 °C					
Comula	Relative Reducibility [#]				
Sample	δ_1	δ_2	Total		
CAL ₀₋₁₁	0.56	0.44	1.00		
CAL ₅₋₁₁	0.72	0.77	1.49		
CAL ₁₀₋₁₁	0.72	0.65	1.37		
CAL ₁₅₋₁₁	0.64	0.84	1.48		
CAL ₀₋₁₈	0.74	0.84	1.57		
CAL ₅₋₁₈	0.78	0.78	1.56		
CAL ₁₀₋₁₁	0.60	0.76	1.38		
CAL ₁₅₋₁₈	0.81	0.83	1.63		

19Table S-2: Relative reducibility of the catalyst materials according to the H_2 -TPR profiles in the20temperature range of 50-600 °C

21 #: reducibility calculated by area under the H₂-TPR profile in the δ_1 and δ_2 region divided by the

22 total area under the CAL₀₋₁₁ curve below 600 °C

23

24

- 25 Figure S-4: CO₂ conversion as a function of temperature for the dry reforming of methane reaction
- 26 with CAL_{x-y} materials prepared at nozzle distance of a) 11 cm and b) 18 cm, where x represents La
- 27 content (wt %) and y represents nozzle distance. Reaction conditions: $N_2:CH_4:CO_2 = 1:1:1$, catalyst 28 loading = 0.025 g, reactant gas Weight Hourly Space Velocity = 96 L/(h.g_{cat})

29

30 31 Figure S-5: H_2/CO ratio produced as a function of reaction temperature for the dry reforming of

32 methane reaction with CAL_{x-y} materials prepared at nozzle distance of a) 11 cm and b) 18 cm,

33 where x represents La content (wt %) and y represents nozzle distance. Reaction conditions:

34 N₂:CH₄:CO₂ = 1:1:1, catalyst loading = 0.025 g, reactant gas Weight Hourly Space Velocity =

35 96 L/(h.g_{cat})

36

Table S-3: Summary of the WHSV of the Co-based catalysts presented in previous studies and this
work, as shown in Figure 7

work, as shown in Figure 7							
Author	Fig 7 Ref No	Temp (°C)	WHSV (L.g _{cat} ⁻¹ .h ⁻¹)*				
Özkara-Aydınoğlu, Aksoylu	39	650	60				
Ruckenstein, Wang	40	700	12				
Horlyck et al.	42	700/800	96				
Zhang et al.	43	700	24				
Wang et al.	47	750	36				
Nagaoka.	48	750	12				
Sajjadi et al.	49	750	24				
Zhang et al.	50	800	72				
Ayodele et al.	51	750	12				
Taherian et al.	52	700	12				
This Study	-	650-800	96				

39 *: WHSV = weighted hourly space velocity – a measure of the flow of reactant gas (CH_4/CO_2)

40 relative to catalyst sample mass

42

46 Figure S-6: CO_2 conversion (Left) and product H_2 /CO ratio (Right) at nozzle distances of 11 cm and

47 18 cm as a function of time for the dry reforming of methane reaction at a constant temperature of

48 700 °C with CAL_{x-v} materials, where x represents La content (wt %) and y represents nozzle distance.

49 Reaction conditions: N_2 :CH₄:CO₂ = 1:1:1 (60 mL/min), catalyst loading = 0.025 g, reactant gas Weight

50 Hourly Space Velocity = 96 L/($h.g_{cat}$)

51

- 52
- 53 References:
- 54 1 H. Asakura, T. Shishido, K. Teramura and T. Tanaka, *Inorg. Chem.*, 2014, **53**, 6048–6053.

55

56

57