Electronic supplementary Information for Construction of hollow structure in La_{0.9}K_{0.1}CoO_{3-δ} nanofibers via grain size control by Sr substitution with an enhanced catalytic

performance for soot removal

Fan Fang, Peng Zhao, Nengjie Feng, Chong Chen, Xue Li, Geng Liu, Hui Wan* and Guofeng Guan*

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China

*Corresponding author:

Prof. Guofeng Guan, E-mail address: guangf@njtech.edu.cn Tel: +86 25 83587198 Prof. Hui Wan, E-mail address: wanhui@njtech.edu.cn

Fig. S1. XRD patterns of $La_{0.9}Sr_{0.1}CoO_{3\text{-}\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3\text{-}\delta}$ catalysts.

Fig. S2. FT-IR patterns of LC, LKC, LSC and LSKC catalysts.

Fig. S3. SEM images of nanotubes: (A) and (B) $La_{0.9}Sr_{0.1}CoO_{3-\delta}$; (C) and (D) $La_{0.5}Sr_{0.5}CoO_{3-\delta}$.

Fig. S4. HRTEM images of (A and B) LSKC and (C) LSC.

Fig. S5. N_2 adsorption-desorption isotherms of LC, LSC, $La_{0.9}Sr_{0.1}CoO_{3-\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3-\delta}$.

Fig. S6. Pore size distribution of LC, LSC, $La_{0.9}Sr_{0.1}CoO_{3-\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3-\delta}$ obtained from BJH measurements.

Fig. S7. CO_2 conversion profiles of soot oxidation over $La_{0.9}Sr_{0.1}CoO_{3-\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3-\delta}$ catalysts.

Fig. S8. NO₂ concentration as the temperature rises in NO-TPO.

Fig. S9. CO₂ conversion profiles of soot oxidation over LC, LKC, LSC and LSKC catalysts with different heating rate.

Sample	a (Å)	b (Å)	c (Å)	α (deg)	β (deg)	γ (deg)
LC	5.4283	5.4283	13.0316	90.0	90.0	120.0
LKC	5.4344	5.4344	13.0623	90.0	90.0	120.0
LSC	3.8171	3.8171	3.8171	90.0	90.0	90.0
LSKC	3.8207	3.8207	3.8207	90.0	90.0	90.0
$La_{0.9}Sr_{0.1}CoO_{3\text{-}\delta}$	5.4056	5.4056	13.1182	90.0	90.0	120.0
$La_{0.5}Sr_{0.5}CoO_{3\text{-}\delta}$	3.8220	3.8220	3.8220	90.0	90.0	90.0

Table S1 Unit-cell parameters of LC, LKC, LSC, LSKC, $La_{0.9}Sr_{0.1}CoO_{3-\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3-\delta}$.

Catalyst	$La_{0.9}Sr_{0.1}CoO_{3-\delta}$	$La_{0.5}Sr_{0.5}CoO_{3-\delta}$
D (nm)	20.1	15.3
m	15.5	17.0
BET $(m^2 \cdot g^{-1})$	13.0	20.1

Table S2 The average particle size of perovskite phase, the grain growth exponentand the BET surface area of $La_{0.9}Sr_{0.1}CoO_{3-\delta}$ and $La_{0.5}Sr_{0.5}CoO_{3-\delta}$.