Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting information for

One-pot regioselective synthesis of pyrazoles and isoxazoles in PEG-400/water by a Cufree nano-Pd catalyzed sequential acyl Sonogashira coupling-intramolecuar cyclization

Narasimha Swamy Thirukovela,^a Ramesh Balaboina,^a Vinayak Botla,^b Ravinder Vadde^{a*} Sreekantha Babu Jonnalagadda^{c*} and Chandra Sekhar Vasam^{d*}

^a Department of Chemistry, Kakatiya University, Warangal, T.S. India; email ; ravichemkuc@gmail.com
^b IICT, Hyderabad, India; email. vinnu.chemistry@gmail.com
^c School of Physics and Chemistry, University of Kwazulu-Natal, Westville Compus, Chiltern Hills, Durban-4000, South Africa. E-mail: jonnalagaddas@ukzn.ac.za
^d Department of Pharmaceutical Chemistry, Telangana University, Warangal, T.S. India; email : csvasam@telanganauniversity.ac.in

Table of contents	Page No
Optimization conditions	S2
TEM images of in situ PdNPs	S3
Copies of ¹ H NMRs of 4a & 4b	S4
Copies of ¹ H & ¹³ C NMRs of 6a-6s	S5-S23
Copies of ¹ H & ¹³ C NMRs of 8a-8m	S24- S37

Table S1. Optimization of reaction conditions for the one-pot synthesis of 6a

$$Ph - C - CI + Ph - \underbrace{=}_{2a} \xrightarrow{(i) 3 \text{ mol}\% \text{ PdCl}_2, \text{ PEG/H}_2O}_{Pyrrolidine, PTC, RT} \xrightarrow{Ph}_{N} \xrightarrow{Ph}_{N} \xrightarrow{Ph}_{N}$$

		Ud Ud					
Entry	PTC	PEG-polymer	N_2H_4 , H_2O (eq)	Temp (°C)	Time (hrs)	Yield(%) ^b	
				Step-i/step-ii	Step-i/step-		
					ii		
1	cetyltrimethylammonium bromide	PEG-400	2	RT/60	4/3	42	
2	triethylbenzylammonium bromide	PEG-400	2	RT/60	4/3	35	
3	tetrabutylammonium iodide	PEG-400	2	RT/60	2.5/3	73	
4	tetrabutylammonium bromide	PEG-400	2	RT/60	2.5/3	87	
5	tetrabutylammonium bromide	PEG-200	2	RT/60	2.5/3	83	
6	tetrabutylammonium bromide	PEG-600	2	RT/60	2.5/3	87	
7	tetrabutylammonium bromide	PEG-400	2	RT/RT	2.5/14	41	
8	tetrabutylammonium bromide	PEG-400	2	RT/45	2.5/7	64	
9	tetrabutylammonium bromide	PEG-400	1	RT/60	2.5/3	58	

^a Reaction conditions: ^a Step i **: 1a** (1.2 mmol), **2a** (1 mmol), pyrrolidine (2.0 mmol), PTC (0.3 mmol) 6 mL of PEG/H₂O (2 : 1); Step 2: (**4a**) 2 mmol. ^b Isolated yields after column chromatography.

Figure S1. TEM image of unevenly distributed *in situ* PdNPs obtained from (a) Pd-NHC (3a)/PTC system during the synthesis of **6a** after 1st catalytic cycle

Figure S2. TEM image of well dispersed *in situ* PdNPs obtained from PdCl₂/PEG-400 systems during the synthesis of **6a** after 1st catalytic cycle

Figure S3. TEM image of *in situ* formed PEG-PdNPs during the synthesis of **61** after 6th catalytic cycle.

S4

S7

$-152.39 \\ -132.74 \\ -133.71 \\ -133.71 \\ -133.71 \\ -133.74 \\ -131.61 \\ -123.53 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -125.73 \\ -105.42 \\ -105$

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 fl (ppm)

S25

S26

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 fl (ppm)

S33

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

