Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Surface Acidity Enhancement of CeO₂ Catalysts via Modification with a Heteropoly Acid for the Selective Catalytic Reduction of NO with Ammonia

Yu Ke¹, Wenjun Huang^{1*}, Sichao Li¹, Yong Liao¹, Jiaxing Li¹, Zan Qu¹, Naiqiang Yan^{1,2}

- 1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- 2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

E-mail address: hwenjun@sjtu.edu.cn (Wenjun Huang)

^{*} Corresponding author, Tel: +86 21 54745591; Fax: +86 21 54745591

Table/Figure captions

- **Table S1** Textual properties of the x% HSiW/Ce catalysts
- Table S2 XPS parameters of the series catalysts investigated
- **Table S3** Spectrophotometry of HSiW/Ce after SCR reaction at 150 °C for 10 h.
- Fig. S1. Schematic diagram for SCR evaluation fixed-bed reaction system
- Fig. S2. Stability test of 10% HSiW/Ce catalyst at 250 °C
- **Fig. S3**. SCR performance of m-HSiW/Ce (mechanical mixing CeO₂ and HSiW) and HSiW/Ce
- Fig. S4. SCR performance of different Keggin-type HPAs
- **Fig. S5**. NH₃ conversion of the various catalysts. Conditions: $[NH_3] = [NO] = 500$ ppm, $[O_2] = 3$ vol.%, N_2 as balance gas, $GHSV = 127000 \text{ h}^{-1}$
- Fig. S6. TEM images of (a) CeO₂ and (b) HSiW/Ce
- Fig. S7. Infrared Spectroscopy of CeO₂, HSiW and HSiW/Ce
- Fig. S8. Raman spectra of CeO₂, HSiW and HSiW/Ce

Table S1Textual properties of the x% HSiW/Ce catalysts

Samples	Grain size (nm)	Surface area (m²/g)	Pore volume (cc g ⁻¹)
CeO ₂	10.7	44.05	0.21
1%HSiW/Ce	13.1	46.12	0.19
5%HSiW/Ce	12.8	34.25	0.18
10%HSiW/Ce	14.3	40.15	0.20
20%HSiW/Ce	12.3	31.28	0.17

Table S2

XPS parameters of the series catalysts investigated

Samples	Surface composition (at.%)			Ce ³⁺ /Ce ⁴⁺	O _{ads} /O _{lat}
	Ce	W	O		
CeO ₂	18.36	/	53.84	0.22	0.58
HSiW	/	12.04	51.36	/	0.35
10%HSiW/Ce (fresh)	13.58	3.54	56.30	0.19	0.52
10%HSiW/Ce (used)	14.10	3.60	57.64	0.18	0.51

Table S3 Spectrophotometry of HSiW/Ce after SCR reaction at 150 °C for 10 h.

Ions	Methods	Concentrations mg/L
NO ₃ -	Disulfonic acid phenol spectrophotometry	0.8650
NO_2^-	Diazo coupling spectrophotometry	0.8180
NH ⁴⁺	Nessler reagent spectrophotometry	241

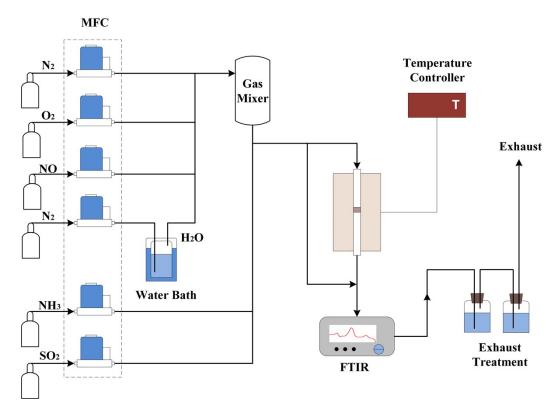


Fig. S1. Schematic diagram for SCR evaluation fixed-bed reaction system

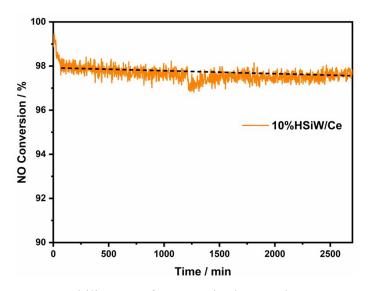


Fig. S2. Stability test of 10% HSiW/Ce catalyst at 250 °C

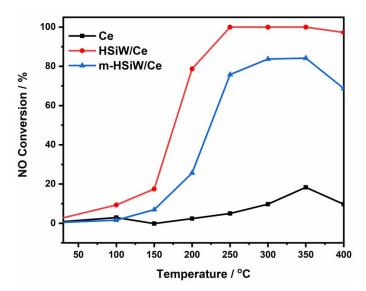


Fig. S3. SCR performance of m-HSiW/Ce (mechanical mixing CeO_2 and HSiW) and HSiW/Ce

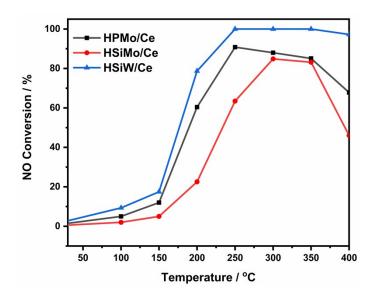
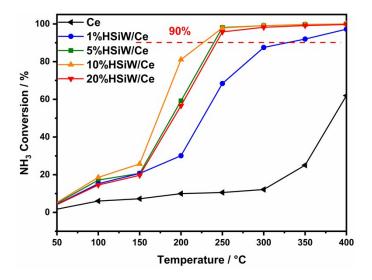



Fig. S4. SCR performance of different Keggin-type HPAs

Fig. S5. NH₃ conversion of the various catalysts. Conditions: $[NH_3] = [NO] = 500$ ppm, $[O_2] = 3$ vol.%, N_2 as balance gas, $GHSV = 127000 \ h^{-1}$

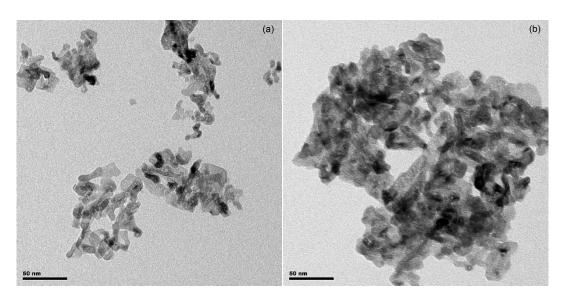


Fig. S6. TEM images of (a) CeO₂ and (b) HSiW/Ce

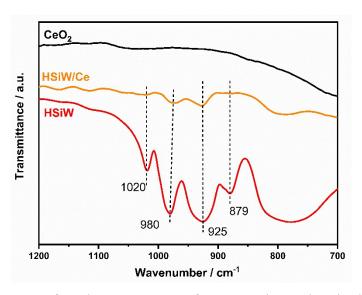
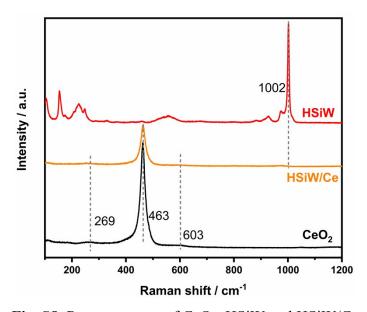



Fig. S7. Infrared Spectroscopy of CeO_2 , HSiW and HSiW/Ce

 $\textbf{Fig. S8}. \ Raman \ spectra \ of \ CeO_2, \ HSiW \ and \ HSiW/Ce$