Fabrication of Au/Pd plasmonic alloy on UiO-66-NH₂:

An efficient visible light induced photocatalyst towards Suzuki Miyaura coupling

reaction under ambient conditions

Satyabrata Subudhi^a, Sriram Mansingh^a, Suraj Prakash Tripathy^a, Ashutosh Mohanty^b,

Priyabrat Mohapatra^c, Dharitri Rath^d, Kulamani Parida^{a*}

^aCentre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar-751030, Odisha, India

^b Department of solid state and structural chemistry unit, IISc Bangalore-560012, India

^c Department of Chemistry, C.V. Raman College of Engineering, Bhubaneswar- 752 054, Odisha, India.

^dDepartment of Chemistry, Rajdhani College, Bhubaneswar-751003, Odisha, India

* Corresponding author

* Corresponding author E-mail: <u>paridakulamani@yahoo.com,</u> <u>kulamaniparida@soauniversity.ac.in,</u> Tel. No. +91-674-2351777 Fax. +91-674-2350642

Figure S1: XPS spectra of (a) Survey scan of UiO-66-NH₂ (b) Survey scan of Au/Pd@UiO-66-NH₂ (1:2), Comparative XPS peaks of (c) Carbon (d) Oxygen (e) Nitrogen (f) Zirconium (parent/composite)

Figure S2: (a) EDAX OF UiO-66-NH₂ (b) EDAX OF Au/Pd@UiO-66-NH₂ (1:2)

Figure S3: Colour mapping of C, N, O, Zr for UiO-66-NH₂ (a-d) and C, N, O, Zr, Au, Pd for Au/Pd@UiO-66-NH₂ (e-h).

Figure S4: Reusability graph

Table S5: A comparative analysis of various photocatalyst towards SMC reaction:

SI.	Catalysts/ Dose	Substrate dose	Solvent	Time	Con.	Yield	Sel.	Ref.
no		(mmol)		(mins)	(%)	(%)	(%)	
		(IB/PBA)						
1	Cu ₁ Pd ₂ @UiO-66-NH ₂ (Zr)/ (5 mg)	0.1/0.2	DMF/H ₂ O	120	53	-	>99	52
2	Pd@UiO-66-NH ₂ (Zr)/ (5 mg)	0.8/1.6	DMF/H ₂ O	300	99	-	>99	53
3	Pd/Au/PN-CeO ₂ / (15 mg)	0.20/0.24	DMF/H ₂ O	30	99.1	-	98.1	54
4	Au/Pd/TiO ₂ / (5 mg)	0.2/0.3	EtOH/H ₂ O	300	-	98	-	55
5	Pd@B-BO₃ / (10 mg)	0.5/0.55	DMF/H ₂ O	120	-	98	-	56
6	Au/Pd/ZrO ₂ / (50 mg)	1.0/1.5	DMF/H ₂ O	360	98	-	99	17
7	Pd/MoS ₂ / (25 mg)	0.4/0.8	EtOH/H ₂ O	120	-	50.3	-	57
8	Pd/Au@SiO ₂ (20 mg)	0.3/0.2	DMF/H ₂ O	30	-	78	-	48
9	Au/Pd@UiO-66-NH ₂ (Zr)/ 20 mg	1.0/2.0	DMF/H ₂ O	60	98	-	>99	This
			EtOH/H ₂ O	60	99	-		work

References:

52 D. Sun, M. Xu, Y. Jiang, J. Long, and Z. Li, *Small Methods*, 2018, 2, 1800164.

53 D. Sun, and Z. Li, *The Journal of Physical Chemistry C*, 2016, **120**, 19744-19750.

54 S. Zhang, C. Chang, Z. Huang, Y. Ma, W. Gao, J. Li, and Y. Qu, *ACS Catalysis*, 2015, **5**, 6481-6488.

55 D. Han, Z. Bao, H. Xing, Y. Yang, Q. Ren, and Z. Zhang, *Nanoscale*, 2017, 9, 6026-6032.

56 Z.J. Wang, S. Ghasimi, K. Landfester, and K.A. Zhang, *Chemistry of Materials*, 2015, 27, 1921-1924.

57 H.H. Shin, E. Kang, H. Park, T. Han, C.H. Lee, and D.K. Lim, *Journal of Materials Chemistry A*, 2017, **5**, 24965-24971.