Supporting information

Self-Supported CoFe LDH/Co_{0.85}Se Nanosheet Arrays as Efficient

Electrocatalytsts for Oxygen Evolution Reaction

Weiyang Jin,^{a,b} Fang Liu,^{a,b} Xiaoliang Guo,^{a,b} Jun Zhang,*^{a,b} Lekai Zheng,^{a,b}

Yongchuan Hu,^{a,b} Jing Mao,^{c,d} Hui Liu,*^a Yanming Xue,^{a,b} Chengchun Tang^{a,b}

^a School of Material Science and Engineering, Hebei University of Technology,

Dingzigu Road 1, Tianjin 300130, P. R. China

^b Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Guangrongdao Road 29, Tianjin 300130, P. R. China

^c School of Materials Science and Engineering, Tianjin University, Tianjin Haihe Education Park, Tianjin 300072, PR China

^d Center for functional materials, Brookhaven National Laboratory, Suffolk County, City of New York 11973, USA

E-mail address: junnano@gmail.com (J. Zhang). liuhuihebut@163.com (H. Liu)

Figure S1. The FTIR spectra of α -Co(OH)₂ and Co_{0.85}Se.

Figure S2. (a, b) The SEM images of α -Co(OH)₂/CC, (c) the low resolution SEM image of Co_{0.85}Se/CC, (d) the SEM image of CoFe LDH/CC (e-f) the low resolution

SEM image of CoFe LDH/Co_{0.85}Se/CC and its edgea and (g) EDS spectra for CoFe

LDH/Co_{0.85}Se/CC.

Figure S3. The elemental mappings of CoFe LDH /Co_{0.85}Se/CC.

Figure S4. (a) XPS survey spectrum and (b) Se 3d spectra of CoFe LDH/Co_{0.85}Se/CC.

Figure S5. Different scan rates of CV of (a) Co_{0.85}Se/CC, (b) CoFe LDH/Co_{0.85}Se/CC,

(c) CoFe LDH/CC for OER.

Figure S6. TOF values of the as-made Co_{0.85}Se/CC, CoFe LDH/Co_{0.85}Se/CC, and

CoFe LDH/CC at different potentials.

Figure S7. Nyquist plots of the CoFe LDH/Co $_{0.85}$ Se/CC before and after long term

OER in 10 mA cm⁻² for 40 h.

Figure S8. (a) The XRD pattern of CoFe LDH/Co_{0.85}Se/CC after long term OER in

10 mA cm⁻² for 40 h.

Figure S9. (a, b) The SEM image and (c) EDS spectra of CoFe LDH/Co_{0.85}Se/CC

after long term OER in 10 mA cm⁻² for 40 h.

Figure S10. The elemental mappings of CoFe LDH /Co_{0.85}Se/CC after long term

OER in 10 mA cm⁻² for 40 h.

Figure S11. (a) XPS survey spectra, (b) Co 2p, (c) Fe 2p, (d) Se 3d, (e) O 1s and (f) FTIR spectra of CoFe LDH/Co_{0.85}Se/CC after long term OER in 10 mA cm⁻² for 40 h.

Catalyst	Specific surface area (m ² g ⁻¹)		
Co0.85Se/CC	4.379		
CoFe LDH/CC	4.379		
CoFe LDH/Co _{0.85} Se/CC	4.876		

 Table S1. Comparison of BET surface area of samples.

Catalyst	Substrate	Electrolyte	J (mA cm ⁻²)	η (mV vs RHE)	Tafel slope (mV dec ⁻¹)	Ref.
CoFe LDH/Co _{0.85} Se CC ^a 1M KOH	CCa		10	241	40	This
		300	355	48	work	
CoFe LDH	GCE ^b	1M KOH	10	286	45	1
Co _{0.85} Se/NC	GCE	1M KOH	10	320	75	2
CoFe-oxyhydroxide	CP ^c	1M KOH	10	330	37	3
C@NiCo Nw	CC	1M KOH	10	302	43.6	4
CoFe DH/NCNTs	GCE	1M KOH	10	270	56.88	5
SnCoFe hydroxide -Ar plasma	NF ^d	1M KOH	10	270	-	6
Ultrathin CoFe LDH	CCE		10	266	37.85	7
with vacancies	UCE		50	313		
Ultrathin CoFe LDH	GCE	1M KOH	10	270	58.3	8
Co ₃ O ₄ /Co-Fe oxide	GCE	1M KOH	10	297	61	9
NiFe LDH /Co _{0.85} Se	EGF ^e	1M KOH	150	270	57	10
CoFe LDH/CoFe alloy	GCE	1M NaOH	10	286	48	11
Ag-CoSe ₂ Nanobelts	GCE	0.1M KOH	10	320	56	12
α -Co ₄ Fe(OH) _x	GCE	1M KOH	10	295	52	13
$CoS-Co(OH)_2@aMoS_{2+x}$	NF	1M KOH	10	380	68	14
CoFe ₂ O ₄ Ns	GCE	0.1M KOH	10	308	36.8	15

Table S2. Comparison of OER performances of CoFe LDH/Co_{0.85}Se/CC with previously reported non-precious metal OER electrocatalysts.

CC^a: Carbon cloth GCE^b: Glassy carbon electrode CP^c: Carbon paper NF^d: Ni foam EGF^e: Exfoliated graphene foil

Reference

- L. Han, C. Dong, C. Zhang, Y. Gao, J. Zhang, H. Gao, Y. Wang and Z. Zhang, Nanoscale, 2017, 9, 16467-16475.
- 2. T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao and M. Cao, *J. Mater. Chem. A*, 2017, **5**, 7001-7014.
- 3. M. Xiong and D. G. Ivey, *Electrochim. Acta*, 2018, **260**, 872-881.
- 4. S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park and I.-K. Oh, *Adv. Energy Mater.*, 2017, **7**, 1601492.
- 5. Y. Liu, Y. Hu, P. Ma, F. Li, F. Yuan, S. Wang, Y. Luo and J. Ma, *ChemSusChem*, 2019, **12**, 2679-2688.
- D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu, C.-L. Dong, Y. Li and S. Wang, Angew. Chem. Int. Ed., 2018, 57, 8691-8696.
- Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao and S. Wang, Angew. Chem. Int. Ed., 2017, 56, 5867-5871.
- 8. H. Yuan, Y. Wang, C. Yang, Z. Liang, M. Chen, W. Zhang, H. Zheng and R. Cao, *ChemPhysChem*, 2019.
- X. Wang, L. Yu, B. Y. Guan, S. Song and X. W. Lou, *Adv. Mater.*, 2018, 30, 1801211.
- 10. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, **9**, 478-483.
- 11. A. M. P. Sakita, R. D. Noce, E. Vallés and A. V. Benedetti, *Appl. Surf. Sci.*, 2018, **434**, 1153-1160.
- 12. X. Zhao, H. Zhang, Y. Yan, J. Cao, X. Li, S. Zhou, Z. Peng and J. Zeng, *Angew. Chem. Int. Ed.*, 2017, **56**, 328-332.
- H. Jin, S. Mao, G. Zhan, F. Xu, X. Bao and Y. Wang, *J. Mater. Chem. A*, 2017, 5, 1078-1084.
- 14. T. Yoon and K. S. Kim, Adv. Funct. Mater., 2016, 26, 7386-7393.
- 15. L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu, *Adv. Mater.*, 2017, **29**, 1606793.