Supporting Information for

Electrocatalytic Conversion of Carbon Dioxide to Formic Acid over Nanosized Cu₆Sn₅ Intermetallic Compounds with a SnO₂ Shell Layer

Takao Gunji, Hiroya Ochiai, Yu Isawa, Yubin Liu, Fumihiro Nomura, Masahiro

Miyauchi and Futoshi Matsumoto

Supporting Table and Figures

Entry	Sn (%)	Cu (%)
Cu ₆ Sn ₅ /CB (Without etching)	80.1	19.9
Cu ₆ Sn ₅ /CB (Etching time : 6s)	52.8	47.2
Cu ₆ Sn ₅ /CB (Etching time : 16s)	54.7	45.3

Table S1 Summarized XPS analysis

Figure S1 XPS profile for Cu6Sn5 NPs/CB in the Cu 2p region (a) before and (b) after 6s etching treatment.

Figure S2. (A, B) High-magnification TEM images of Cu6Sn5 NP/CB sample. These images were captured in different area.

Figure S3 Faradaic efficiencies for HCOO⁻, CO and H₂ produced over Cu_6Sn_5 NP/CB at -0.6 V vs RHE in Ar- and CO₂-saturated 0.1 M KHCO₃ aqueous solution.

Figure S4 Potential dependence on Faradaic efficiency (left) and current density (right) towards electrochemical reduction of CO₂ over (A) Cu plate and (B) Cu NPs/CB.

Figure S5 Potential dependence on production ratio over Sn NPs/CB and Cu_6Sn_5 NPs/CB.

Figure S6 Electrocatalytic selectivity (100 % - FE of H_2) over Cu_6Sn_5 NP/CB with various loading weight % of metal.

Figure S7 Stability test in the faradaic efficiencies for HCOO-, CO, and H_2 produced over Cu₆Sn₅ NP/CB at -0.6 V over five cycles.

Figure S8 The k3-weighted Fourier-transform from Cu K-edge EXAFS spectra for (a) Cu foil, (b) Cu NPs/CB and (c) Cu₆Sn₅ NPs/CB.

	Bond	R (ref.) / Å	R (expt.) / Å	R-factor ^a
Cu foil	Cu- Cu	2.56	2.54	0.0057
Cu ₆ Sn ₅ NPs/CB	Cu – Cu	2.56	2.49	
	Cu – Cu	2.61	2.53	
	Cu - Sn	2.69	2.55	0.0076
	Cu – Sn	2.74	2.73	
	Cu - Sn	2.82	2.68	
Cu NPs/CB (Cu metal)	Cu – Cu	2.56	2.53	0.059 ^b
	Cu – Cu	2.56	2.54	
Cu NPs/CB (Cu metal and oxide)	Cu – O	1.96	1.86	0.0074°
	Cu – Cu (oxide)	2.94	2.98	

Table S2 Summarized bond type, and distance between the nearest neighbors (R)estimated from the Cu K EXAFS analysis.

a, The R-factor represents the quality of fitting. b was fitted using Cu metal. c was fitted using Cu metal and Cu oxide.