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S1. QENS spectra

Figure S1. QENS spectra as a function of Q for phenol at (a) 393, (b) 418 and (c) 443 K in zeolite Beta. (–) is the 
total fit to the data points, (–) is the quasi-elastic Lorentzian component.

S2. Rotational models

In this section we present the analysis of the experimental elastic incoherent structure factor 

(EISF) to decipher the modes of phenol motion present. Further information on the theory 

underpinning relevant dynamical models and their application to such systems may be found 

in the referenced resources.1,2 
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A number of models are available to characterise the localised motions of phenol, related to 

the geometries of motion of the protons in the molecule. We next outline the models used to 

fit the experimental EISF.

Isotropic rotation is characterised by a molecule whose reorientation takes place through a 

series of small angle, random rotations so that no most probable orientation exists on a time 

average, as depicted in Figure S2. The scattering law as derived by Sears (referenced in the 

main article) for this form of rotation has an EISF ( ) given as𝐴0(𝑄)

𝐴0(𝑄) =  𝑗2
0 (𝑄𝑟) eq. (S1)

where r is the radius of rotation, and j0 is the 0th order spherical Bessel function given as

𝑗0(𝑄𝑟) =  
sin (𝑄𝑟)

(𝑄𝑟) eq. (S2)

The radius of rotation of the 6 protons as calculated from the center of mass is 2.6 Å. The 

theoretical EISF for isotropic rotation with a radius of rotation of 2.6 Å is plotted against the 

experimental EISFs in Figure S3 as the dashed black line. We note that the model falls far 

below all experimental points.

Figure S2. Isotropic rotation of a phenol molecule with a radius of rotation (r).



Figure S3. Experimental EISF plot of phenol in zeolite Beta at 393 K against different theoretical EISF models.

Figure S4. Rotational motion of phenol bound to the zeolite surface by the hydroxyl group. The model depicts 
2-site symmetrical rotation of the protons marked with a * around the O-C1 bond axis with a rotational 
diameter of d, and uniaxial rotation of those same protons around the same axis with a radius of rotation ru.

Our next consideration is that of a phenol molecule hydrogen-bonded by the O-H group to 

the zeolite surface, with a rotating benzyl group as shown in Figure S4. A model which 

reasonably describes this motion is that of the rotation of protons which have two-fold 

rotational symmetry between equivalent sites in a 2-site jump rotation model with a diameter 

d, as depicted in Figure S4 (marked with an asterisk).



The theoretical EISF of the 2-site jump rotation model is given by eq. (S3a), where  is the 0th 𝑗0

order spherical Bessel function in eq. (S2), and d in this case is distance between the 

symmetrically equivalent protons marked by an asterisk in Figure S4 (4.09 Å).

This model necessitates the incorporation of an immobile fraction (discussed in more detail 

later when considering entire populations of molecules) as the hydroxyl proton and the 

proton attached to C4 are considered static in this model. This incorporation is shown in eq. 

(S3b), where 4/6 of the protons in the molecule are contributing to the EISF.
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𝐴0(𝑄) =
4
6

 (1
2
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 ) eq. (S3b)

This model is plotted against the experimental EISF in Figure S3 as the dot-dashed black line, 

however it falls above the experimental points for all values of Q. The shape of the model 

function is also not in agreement with the shape of the experimental EISFs.

We now use the model of continuous uniaxial rotation around a circle to describe the proton 

motions. This model cannot be used for powder samples typical for porous material studies, 

because no expression exists for the average angle θ between the axis of rotation and the 

direction of Q. However, with a sufficiently large N (> 7) the scattering function does not 

change as N increases. The approximation of jump rotation over N sites may then be used, 

given in eq. (S4a). As with the 2-site jump rotation model, this model necessitates the 

incorporation of an immobile fraction to account for the hydroxyl proton and the proton 

attached to C4 being static in this model, shown in eq. (S4b).
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This model is plotted against the experimental EISF as the dotted line in Figure S3; while this 

plot appears to fit the data at the highest Q values, it falls above the experimental points 

outside of the error bars at Q values below 1.27 Å-1 .

We now consider translational motion of the oxime localised to a confined volume. Volino 

and Dianoux (referenced in the main article) developed a model to describe a scattering 

molecule undergoing translational motions in a confined spherical volume of radius rconf 

(shown in Figure S5). This scattering model is based on the general problem of a particle 

diffusing in a potential field of spherical symmetry, where the potential is low inside the 

sphere’s volume but infinite outside of it.

Figure S5. Translational motion of the cyclohexanone oxime confined to a sphere of radius rconf.

The EISF of this model is given as: 

𝐴0(𝑄) =  [ 
3𝑗1(𝑄𝑟𝑐𝑜𝑛𝑓)

𝑄𝑟𝑐𝑜𝑛𝑓 ]2 eq. (S5)

where j1 is the spherical Bessel function of the first kind, order 1, given by: 

𝑗1(𝑄𝑟𝑐𝑜𝑛𝑓) =  
sin (𝑄𝑟𝑐𝑜𝑛𝑓)

(𝑄𝑟𝑐𝑜𝑛𝑓)
‒  

cos (𝑄𝑟𝑐𝑜𝑛𝑓)
(𝑄𝑟𝑐𝑜𝑛𝑓) eq. (S6)

where rconf is the radius of the sphere which confines the diffusion. In this study we consider 

the radius of a micro-pore in zeolite Beta, 3.3 Å. The Volino model for confined diffusion is 

plotted in Figure S3 as the solid black line, showing that the model falls below the 

experimental points at all Q values.



The localised models alone are clearly not suitable for fitting the EISF. However, we may also 

consider that only a fraction of molecules is mobile and undergoing such localised motions on 

the timescale of the instrument, with the remaining molecules considered as static, 

potentially bound through strong hydrogen-bonding to the zeolite Brønsted acid sites. We 

can calculate an effective EISF which takes this scenario into consideration, given by:

𝐴0_𝑒𝑓𝑓(𝑄) =  𝑝𝑥 𝐴0(𝑄) + (1 ‒ 𝑝𝑥) eq. (S7)

where  is the fraction of mobile molecules, and A0(Q) is each EISF as shown in eq. (S1), eq. 𝑝𝑥

(S3b), eq. (S4b), and eq. (S5). In Figure S6 we plot these effective EISFs against the 

experimental data obtained at 393 K with the optimal  (as obtained by a least squares fitting 𝑝𝑥

procedure). While the 2-site jump rotation model is not able to provide an adequate fit at any 

fraction, we observe that both the isotropic rotation model and the Volino confined diffusion 

model give agreement within the error bars of the experimental data points, when a mobile 

fraction of 0.6 and 0.55 are implemented respectively.

Figure S6. The experimental EISF of phenol in zeolite Beta at 393 K, plotted against the models of localised 
motions after fitting with an immobile fraction. The optimum px value is listed in brackets.

The close agreement to the experimental data of both the isotropic rotation model and the 

confined diffusion model leaves ambiguity as to which form of motion is observed. However, 

this ambiguity may be addressed by examining the broadenings of the QENS spectra as a 

function of Q. The full width at half maximum (FWHM) of the Lorentzian component of the 

QENS spectra as a function of Q at 393 K are plotted in Figure S7. Crucially, the plot shows 



that the broadenings are independent of Q, which discounts the possibility of any dynamical 

behaviour involving translational motion being observed on the timescale of the instrument, 

including diffusion confined to a spherical volume. Had Fickian diffusion confined to a 

spherical volume been present, the broadenings would have shown a DQ2 dependence, with 

a plateauing at Q values below Q = π/rconf  (which in this case would be 0.95 Å-1 if we consider 

rconf to be 3.3 Å). Had the motion been of the nature of jump diffusion confined to a spherical 

volume, the broadenings would have exhibited a dependence such as that in previous work,88 

where a Q dependence of one of the relevant jump diffusion models would be exhibited, but 

with the same plateauing below Q = 0.95. The absence of such a dependence allows us to 

conclude that we are observing isotropic rotation of phenol in the zeolite Beta channels with 

a fraction of immobile molecules.

Figure S7. Q-dependence of the HWHM broadening of the Lorentzian components of QENS spectra of phenol 
in zeolite Beta at 393 K.
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