Supplementary information for:

Strong Lewis acidic catalysts for C–F bond activation by fluorination of activated γ -Al₂O₃

Clara Patricia Marshall^{a,b}, Gudrun Scholz^a, Thomas Braun^{a,*} and Erhard Kemnitz^{a,*}

Figure S1. Powder X-ray diffractogram of catalysts **1** to **6**. The main reflections of β -AlF₃ (PDF No. 43-435, 2 θ =15 and 25°) and γ -Al₂O₃ (PDF No. 10-425, 2 θ =46 and 67°) are depicted as straight lines

Figure S2. Powder X-ray diffractogram of catalysts **7** and **8**. The main reflections of β -AlF₃ (PDF No. 43-435, 2 θ =15 and 25°) and γ -Al₂O₃ (PDF No. 10-425, 2 θ =46 and 67°) are depicted as straight lines

Figure S3. N₂ sorption isotherm of catalysts 1 (black) and 2 (blue)

Figure S4. N₂ sorption isotherm of catalysts 5 (black) and 6 (blue)

Figure S5. N₂ sorption isotherms of catalysts 3 (black) and 4 (blue)

Figure S6. N₂ sorption isotherm of catalysts 7 (black) and 8 (blue)

Figure S7. Pore width distribution (following BJH model, adsorption branch) of catalysts **1** (black) and **2** (blue)

Figure S8. Pore width distribution (following BJH model, adsorption branch) of catalysts **3** (black) and **4** (blue)

Figure S9. Pore width distribution (following BJH model, adsorption branch) of catalysts **5** (black) and **6** (blue)

Figure S10. Pore width distribution (following BJH model, adsorption branch) of catalysts **7** (black) and **8** (blue)

Figure S11. NH_3 -TPD desorption profiles of catalysts 1 (black) and 2 (blue)

Figure S12. $\rm NH_3\text{-}TPD$ desorption profiles of catalysts 5 (black) and 6 (blue)

Figure S13. DRIFTS spectra of catalysts 1 and 2 after CD_3CN adsorption and 1 minute desorption under vacuum

Figure S14. DRIFTS spectra of catalysts 5 and 6 after CD_3CN adsorption and 1 minute desorption under vacuum

Figure S15. DRIFTS spectra of catalysts **1** and **2** after CD_3CN adsorption, in the region of the OH stretching modes

Figure S16. DRIFTS spectra of catalysts **5** and **6** after CD_3CN adsorption, in the region of the OH stretching modes

Figure S17. DRIFTS spectra of catalysts **1** and **3** after CD_3CN adsorption, in the region of the OH stretching modes

Table S1 Characterization done on the catalysts			
Catalyst	Short name	Surface area by BET [m ² /g]	Pore size [Å] ^[a]
7	$AIF_3-\gamma-AI_2O_3$	196	73
8	$F-AIF_3-\gamma-AI_2O_3$	181	93

^[a] Determined by applying the BJH model on the adsorption branch, 4A/V