Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary material

N-doped hierarchical porous metal-free catalysts derived from covalent

triazine frameworks for efficient oxygen reduction reaction

Yaqi Cao,^a Yuanzhi Zhu,^b Xifan Chen,^a Bahreselam Sielu Abraha,^a Wenchao Peng,^a Yang Li,^a Guoliang Zhang,^a Fengbao Zhang^a and Xiaobin Fan^{*a}

a. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, China

Email: xiaobinfan@tju.edu.cn

b. Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China.

Fig. S1 SEM images of (a-b) Super P; TEM images of (c-d) CTF, (e-f) Super P, and (g-h) CTF-Super P-10.

Table S1. Specific Surface area (SSA) and pore volume characteristics of CTF, CTF-Super P-5, CTF-Super P-10, CTF-Super P-15 and Super P.

Sample	The ratio of 1,4-dicyanobenzene	SSA	Micropore volume	Mesopore volume	
	monomer, $ZnCl_2$, and Super P (m^2/g)		(cm ³ /g)	(cm ³ /g)	
CTF	1/10/0	1680	0.780	0.600	
CTF-Super P-5	1/10/5	1873	0.898	1.568	
CTF-Super P-10	1/10/10	1925	0.776	1.852	
CTF-Super P-15	1/10/15	835	0.396	1.219	
Super P	/	49	0.018	0.374	

Table S2. The chemical compositions of catalysts obtained by XPS

Sample	C (at%)	N (at%)	O (at%)	
CTF	82.79	6.56	10.36	
CTF-Super P-10	87.45	4.16	8.19	

Table S3. Summary of the ORR performance of CTF, CTF-Super P-5, CTF-Super P-10, CTF-Super P-15, and 20% Pt/C obtained from LSV curves in O₂-saturated 0.1M KOH at 1600 rpm.

Sample	Onset potential	Half-wave potential	Limiting current density
	(E_{o}/V)	$(E_{1/2}/V)$	$(J_{\rm m}/{ m mA}\cdot{ m cm}^{-2})$
CTF	1.008	0.881	4.76
CTF-Super P-5	0.997	0.882	5.06
CTF-Super P-10	0.981	0.883	5.31
CTF-Super P-15	0.949	0.838	4.55
Pt/C	1.009	0.886	4.54

Fig. S2 LSV curves of CTF-Super P-10 before and after the addition of 1mM KSCN at a rotation rate of 1600 rpm with a scan rate of 10 mV s⁻¹ (a) in O₂-saturated 0.1 M KOH solution and (b) in O₂-saturated 0.1 M HClO₄ solution.

Fig. S3 Nyquist plots of CTF and CTF-Super P-10 (a) in O2-saturated 0.1 M KOH solution and (b) in O2-saturated 0.1 M HClO4 solution.

Table S4. Comparison of the onset potential (E_0 vs. RHE), half-wave potential ($E_{1/2}$ vs. RHE) and limiting current density (J_m) of N-doped metal-free catalysts for ORR in alkaline and acidic medium.

Catalyst	Mass loading	rotation speed	Electrolyte	$E_{\rm o}\left({ m V} ight)$	$E_{1/2}(V)$	$J_{\rm m}$	Ref
CTF-Super P-10	(mg·cm ²)	(mp) 1600	0.1 M KOH	0.981	0.883	(mA·cm ⁻)	This work
			0.1 M HClO ₄	0.840	0.717	5.40	This work
VA-NCNT	/	1400	0.1 M KOH	0.885	/	4.1	1
N-graphene	0.11	1000	0.1 M KOH	0.775	0.665	/	2
Meso-EmG	0.82	1600	0.1M KOH	1.0	/	/	3
			0.1 M HClO ₄	0.829	/	/	
g-C ₃ N ₄ @CMK-3	0.09	1500	0.1 M KOH	0.865	/	4.0	4
Carbon-L	0.10	1600	0.1 M KOH	0.861	0.70	4.6	5
NPMC-1000	0.50	1600	0.1 M KOH	0.94	0.85	4.1	6
NPC-F	0.24	1600	0.1 M KOH	0.91	0.84	5.5	7
MPC-np	0.05	1600	0.1 M KOH	0.865	/	5.0	8
TTF-700-96	/	1600	0.1 M KOH	0.828	0.744	5.0	9
N-GQDs/G-12	0.07	1600	0.1 M KOH	0.875	/	3.7	10
N-CNS-120	0.21	1600	0.1 M KOH	0.889	0.755	5.79	11
NHC/rGO-950	0.28	1600	0.1 M KOH	0.95	0.83	5.64	12
			0.1 M HClO ₄	0.75	/	/	
M1A5-900	12.37	1600	0.1 M KOH	0.99	0.87	5.8	13
			$0.5 \ M \ H_2 SO_4$	0.81	0.53	/	
S1N6C900	/	1600	0.1 M KOH	0.95	0.83	4.86	14
			$0.5 \ M \ H_2 SO_4$	0.785	0.47	4.50	
CTF-CSU1	0.20	1600	0.1 M KOH	0.79	0.57	5.6	15

C-Zn-MOF-74@CNFs	0.20	1600	0.1M KOH	0.91	0.770	4.466	16
TPOP-900	0.20	1600	0.1 M KOH	0.976	0.875	5.20	17

Fig. S4 (a) LSV curves of CTF, CTF-Super P-5, CTF-Super P-10, CTF-Super P-15, and Pt/C, and (b) LSV results of CTF-Super P-10 before and after 5000 potential cycles in O_2 -saturated 0.1 M KOH solution. (c) LSV curves of CTF-Super P-10 and Pt/C, and (d) LSV results of CTF-Super P-10 before and after 5000 potential cycles in O_2 -saturated 0.1 M HCIO₄ solution. The above data were tested with a carbon counter electrode.

Table S5. Comparison of the ORR performance obtained from LSV curves using a carbon counter electrode and a Pt counter electrode, respectively.

		Carbon counter electrode			Pt counter electrode		
Catalyst	Electrolyte	$E_{\rm o}\left({ m V} ight)$	$E_{1/2}(V)$	$J_{ m m}$ (mA·cm ⁻²)	$E_{\rm o}\left({ m V} ight)$	<i>E</i> _{1/2} (V)	$J_{\rm m}$ (mA·cm ⁻ ²)
CTF	0.1 M KOH	1.015	0.885	4.77	1.008	0.881	4.76
CTF-Super P-5	0.1 M KOH	0.997	0.883	5.00	0.997	0.882	5.06
CTF-Super P-10	0.1 M KOH	0.983	0.885	5.32	0.981	0.883	5.31
	0.1 M HClO ₄	0.847	0.734	5.45	0.840	0.717	5.40
CTF-Super P-15	0.1 M KOH	0.950	0.839	4.55	0.949	0.838	4.55
Pt/C	0.1M KOH	1.011	0.886	4.48	1.009	0.886	4.54
	0.1 M HClO ₄	0.994	0.896	5.09	0.989	0.891	5.08

Notes and references

- 1 K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai, Science, 2009, 323, 760.
- 2 L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano, 2010, 4, 1321-1326.
- 3 W. Yang, T.-P. Fellinger and M. Antonietti, J Am Chem Soc, 2011, 133, 206-209.
- 4 Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu and S. Z. Qiao, J Am Chem Soc, 2011, 133, 20116-20119.
- 5 P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun and D. Cao, Energy Environ Sci, 2014, 7, 442-450.
- 6 J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nat Nanotechnol*, 2015, **10**, 444-452.
- 7 Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu and X. Feng, Adv Mater, 2016, 28, 1981-1987.
- 8 X. Wang, X. Li, C. Ouyang, Z. Li, S. Dou, Z. Ma, L. Tao, J. Huo and S. Wang, J Mater Chem A, 2016, 4, 9370-9374.
- 9 L. Hao, S. Zhang, R. Liu, J. Ning, G. Zhang and L. Zhi, Adv Mater, 2015, 27, 3190-3195.
- 10 M. Fan, C. Zhu, J. Yang and D. Sun, *Electrochim Acta*, 2016, 216, 102-109.
- 11 H. Yu, L. Shang, T. Bian, R. Shi, G. I. Waterhouse, Y. Zhao, C. Zhou, L. Z. Wu, C. H. Tung and T. Zhang, *Adv Mater*, 2016, 28, 5080-5086.
- 12 L. Jiao, Y. Hu, H. Ju, C. Wang, M.-R. Gao, Q. Yang, J. Zhu, S.-H. Yu and H.-L. Jiang, J Mater Chem A, 2017, 5, 23170-23178.
- 13 J. Huang, J. Han, T. Gao, X. Zhang, J. Li, Z. Li, P. Xu and B. Song, Carbon, 2017, 124, 34-41.
- 14 J. Li, Y. Zhang, X. Zhang, J. Huang, J. Han, Z. Zhang, X. Han, P. Xu and B. Song, ACS Appl Mater Interfaces, 2017, 9, 398-405.
- 15 W. Yu, S. Gu, Y. Fu, S. Xiong, C. Pan, Y. Liu and G. Yu, J Catal, 2018, 362, 1-9.
- 16 I. T. Kim, S. Shin and M. W. Shin, Carbon, 2018, 135, 35-43.
- 17 M. Yang, X. Long, H. Li, H. Chen and P. Liu, ACS Sustain Chem Eng, 2018, 7, 2236-2244.