Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Amorphous Fe₂O₃ for photocatalytic hydrogen evolution

Zhaoyong Lin, Chun Du, Bo Yan and Guowei Yang*

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, Sun Yat-sen University,

Guangzhou 510275, Guangdong, P. R. China.

*Corresponding author: <u>stsygw@mail.sysu.edu.cn</u>

Figure S1 TEM image and SAED pattern of the raw material CHPs.

Figure S2 XRD patterns of CHPs (Raw), AFNs (LAL) and CMNs (Annealed). Standard XRD patterns of α -Fe₂O₃ (JCPDS No. 33-0664) and γ -Fe₂O₃ (JCPDS No. 39-1346) are illustrated with black and blue lines respectively.

Figure S3 Size distribution histogram with the Gaussian fitting curve of AFNs.

Figure S4 Size distribution histogram with the Gaussian fitting curve of CMNs.

Figure S5 Phtocatalytic H₂ evolution over AFNs upon AM 1.5 irradiation using different hole scavengers with different concentration for 3 h. (a) Na_2S/Na_2SO_3 solution with fixed Na_2S/Na_2SO_3 molar ratio of 1.4. The horizontal axis indicates the concentration of Na_2SO_3 . (b) TEOA aqueous solution with different volume fraction.(c) MeOH aqueous solution with different volume fraction.

Figure S6 Phtocatalytic H_2 evolution stability evalution over AFNs upon AM 1.5 irradiation. (a) Cycling tests with 5 rounds. Each round was performed for 5 h. (b) Long-term photocatalysis for 24 h.

Figure S7Tauc plots of AFNs and CMNs.

Figure S8 O 1s XPS spectra and the deconvolution results of (a) AFNs and (b) CMNs.

Sample	$ au_1$ (ps)	$ au_2$ (ps)	A ₁ (%)	A_2 (%)	τ (ps)
AFNs	94	142	36.3	63.7	129
CMNs	84	197	27.8	72.2	181

Table S1The parameters of the TRPL decay curves at 410 nm.

Sample	$ au_1$ (ps)	$ au_2$ (ps)	A ₁ (%)	A ₂ (%)	τ (ps)
AFNs	86	107	54.2	45.8	97
CMNs	16	29	39.5	60.5	26

Table S2The parameters of the TRPL decay curves at 545 nm.

Sample	$ au_1$ (ps)	$ au_2$ (ps)	A ₁ (%)	A ₂ (%)	τ (ps)
AFNs	11	28	71.3	28.7	20
CMNs	8	16	62.5	37.5	12

Table S3The parameters of the TRPL decay curves at 780 nm.

Photocatalys	Cocatalys	Illuminatio	Scavenger	Specific rate	Reference
t	t	n		(µmol h ⁻¹ g ⁻¹)	
AFNs	None	AM1.5	Na ₂ SO ₃	449.5	This work
AFNs	None	<420 nm	Na ₂ SO ₃	331	This work
AFNs	None	420-760 nm	Na ₂ SO ₃	153.5	This work
$TiO_2 \cdot nH_2O$	None	200-1000	Methanol	250-350	[S1]
		nm			
Zn-Ge-O	None	>420 nm	Methanol	62	[S2]
Zn-Ge-O	Pt	>420 nm	Methanol	282	[S2]
Carbon	None	>420 nm	TEOA	Trace	[S3]
nitride					
Carbon	Pt	>420 nm	TEOA	180	[S3]
nitride					
Carbon	Pt	>440 nm	TEOA	157.9	[S4]
nitride					

Table S4 Comparison of the photocatalytic activity of AFNs with other amorphous

 photocatalysts.

Reference

[S1] Z. Zhang, P. A. Maggard, J. Photoch. Photobio. A2007, 186, 8.

[S2] L. Qian, J. F. Chen, Y. H. Li, L. Wu, H. F. Wang, A. P. Chen, P. Hu, L. R. Zheng, H. G. Yang, Angew. Chem. Int. Ed.2015, 54, 11467.

- [S3] M. Z. Rahman, J. Moffatt, N. Spooner, Mater. Horiz. 2018, 5, 553.
- [S4]Y. Kang, Y. Yang, L. Yin, X. Kang, G. Liu, Adv. Mater. 2015, 27, 4572.