Supporting Materials

Selectively creating oxygen vacancies on PrCe/SiO₂ catalysts for the transformation of furfural-acetone adduct into a functionalized 1,3-diene

Yanlong Qi^{*a*}, Shijun Liu^{*a,b*}, Zaizhi Liu^{*c*}, Long Cui^{*a*}, Lingyun Huang^{*a,b*}, Yinxin Yang^{*a,b*}, Ruiyao

Wu ^{*a,b*}, Quanquan Dai ^{*a*}, Jianyun He ^{*a*}, Wei Dong ^{*a*}, Chenxi Bai ^{*a,b**}

^{*a*} Key Laboratory of High–Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Road, Changchun 130022, China;

^b Applied Chemistry, University of Science and Technology of China, Jinzhai Road, Hefei 230026,

China.

^c College of Life Sciences, Jiangxi Normal University, Ziyang Road, Nanchang 330022, China

* Corresponding author: baicx@ciac.ac.cn

Smaple	FAH concentration (%)	Conversion (%)	Selectivity (%)	Formation rate
				$(mmol/(g_{cat}h))$
SiO ₂	2	97	41	0.35
Ce/SiO ₂	2	100	92	0.81
Ce/SiO ₂	4	100	80	1.50
Ce/SiO ₂	5.3	100	59	1.51
AgCe/SiO ₂	2	100	40	0.35
LaCe/SiO ₂	2	100	75	0.61
PrCe/SiO ₂	2	100	96	0.83

Table S1 Catalytic results over various catalysts.

Catalyst weight: 0.40 g; temperature: 300 °C; feed rate: 0.05 mL/min; N_2 flow rate: 50 mL/min; the result data are averaged within 1 h.

Table S2 Content of CeO_2 in $PrCe/SiO_2$ catalysts

Smaple	CeO ₂ loading wt%
Ce/SiO ₂	12.45
PrCe _{0.42} /SiO ₂	11.58
PrCe _{0.73} /SiO ₂	11.22
PrCe _{1.07} /SiO ₂	10.87
PrCe _{1.54} /SiO ₂	10.39
PrCe _{2.11} /SiO ₂	9.68

Fig.S1 XRD pattern: (a) 12wt% of Pr/SiO_2 , (b) 28wt% of Pr/SiO_2 , (c) Pr_6O_{11} and (d) CeO_2

Fig.S2 HRTEM of $PrCe_{1.54}/SiO_2(a)$, $PrCe_{2.11}/SiO_2(b)$ and $PrCe_{2.82}/SiO_2(c)$

Fig. S3 TEM image of CeO₂/SiO₂

Fig. S4 XPS spectrum of pure PrO_x : (a), (b) and CeO_2 : (c), (d).

Fig. S8 XPS of Ce 3d: CeO₂/SiO₂ with 12.45 wt% of CeO₂ loading, PrCe_{2.82}/SiO₂ with 10 wt% of

CeO₂ loading, and PrCe_{1.54}/SiO₂ with 9 wt% of CeO₂ loading.

Fig. S9 SEM–EDS analysis of PrCe_{2.11}/SiO₂: Elemental distribution and content.

Fig. S10 Conversion, selectivity and formation rate as function of Pr/Ce atom ratio (5.3 wt% of

FAH)

Fig. S11 TGA of spent PrCe/SiO₂ catalysts

Table S3	Relative conce	ntration of oxyg	gen vacancies

Smaple	$S_{\rm OV}/(S_{\rm OV} + S_{\rm F2g})$
PrCe _{0.42} /SiO ₂	23
PrCe _{0.73} /SiO ₂	27
PrCe _{1.07} /SiO ₂	41
PrCe _{1.54} /SiO ₂	54
PrCe _{2.11} /SiO ₂	63
PrCe _{2.82} /SiO ₂	45

 $S_{\rm F2g}\!\!:$ Peak area of the F2g mode at approx. 452 cm^{-1}

 S_{OV} : Peak area of the oxygen vacancy at approx. 567 cm⁻¹

Fig.S12 ¹H NMR and ¹³C NMR curve of FAH in CDCl₃

¹H NMR (CDCl₃ 400 MHz, ppm): δ = 1.29 (d, 3H), 2.86 (s, 1H), 4.38 (m, 1H), 6.10-6.22 (m,

2H), 6.26-6.39 (m, 2H), 7.29 (d, 1H).

¹³C NMR (CDCl₃ 100 MHz, ppm): δ = 23.40, 68.25, 107.92, 111.33, 117.61, 132.49, 141.93,

152.56

Ref: Org. Lett.2012, 14, 5134-5137; J. Org. Chem.2010, 75, 2981-2988; J Mol. Catal. B: Enzym.2016, 126, 37-45; J. Org. Chem. 1987, 52, 4855-4859

Fig.S13 ¹H NMR and ¹³C NMR curve of F-diene in CDCl₃

¹H NMR (CDCl₃ 400 MHz, ppm): δ = 7.37 (d, 1H), 6.72 (dd, 1H), 6.47-6.26 (m, 3H), 6.23 (d,

1H), 5.31 (d, 1H), 5.13 (d, 1H).

¹³C NMR (CDCl₃ 100 MHz, ppm): δ = 153, 142, 136, 128, 120, 117, 111, 108

Ref: Org. Biomol. Chem., 2010, 8, 2312-2315; Chem. Commun., 2018, 54, 10104-10107; Chem. Eur. J. 2013, 19, 3833-3837.