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Figure S1. Calculated structure model of MOR-supported [Fex(u-0)2]** dimer species. Red,

yellow, purple, grey blue and white balls represent O, Si, Al, Fe and H atoms, respectively.
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Figure S2. A typical *H-NMR spectrum obtained from the direct partial oxidation of methane
with H,O; on 0.5 wt% Fe/MOR-air. The oxygenated products were identified as methanol (6
= 3.35 ppm), methyl hydroperoxide (6 = 3.85 ppm), methane diol (6 = 5.04 ppm), and formic
acid (5 = 8.27 ppm). Resonances at 6 = 0.17 and 4.78 ppm arise from the methane and water,

respectively.
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Figure S3. Comparison of the activity and selectivity on H-MOR supported Fe catalysts with
different Fe loading in weight % for methane partial oxidation. Reaction condition: autoclave

reactor, H,O, solution 20 mL, [H,0;] = 0.5M, 30 bar of 95% CH4/N,, 80 <C, 1 h, 30 mg

catalyst.
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Figure S4. Comparison of the activity and selectivity for methane partial oxidation with H,0,
over H-MOR, 0.5 wt % Fe/MOR-air and 0.5 wt% Fe/MOR-H; catalysts. Reaction condition:
H,0, solution 20 mL, [H,0;] = 0.5M, 30 bar of 95% CH,/N,, 80 <C, 30 mg catalyst.



[ Jco,[JHCHO [ HCOOH [_]CH,00H[__]CH,0OH

300 100
g 250 - 80 g
=1 2
= 200 =
c L60 G
3 9
g 150 0
- I 40 ©
S 100+ . I" S
B ] - | =
- ’/ B ()
o 50 - - 20 =
O T T T T T T T T T T T T T T T O
1:0 2:1 1:1 1:2

m1(Fe/MOR-H,) / m2(Cu/MOR)

Figure S5. Effect of heterogeneous Cu on the methanol selectivity for methane partial
oxidation with H,O, using 0.5 wt % Fe/MOR-H, catalyst. Reaction condition: H,O; solution
20 mL, [H20,] = 0.5M, 30 bar of 95% CH4/N,, 80 <C, 30 mg catalyst.
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Figure S6. Effect of H,O, concentration on the methanol selectivity for methane partial

oxidation with H,O, using 0.5 wt % Fe/MOR-H, catalyst. Reaction condition: H,O, solution

20 mL, [H20,] = 0.5M, 30 bar of 95% CH4/N;, 80 <C, 30 mg catalyst.
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Figure S7. k®-weighted EXAFS oscillation for 0.5 wt% Fe/MOR-air catalyst and reference Fe
foil.
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Figure S8. HAADF-STEM images, STEM-EDX elemental mappings and STEM-EDX
spectrum of 0.5 wt% Fe/MOR-H; catalyst.
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Figure S9. Calculated Gibbs free energy change (AG) of the formation of [Fex(u-O),0],
[Fea(n-0)204], [Fea(n-0)2(OH),], [Fe2(u-OH),] and [Fex(u-OH),0,] species.
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Figure S10. Calculated intermediate structures for CH3;OH formation via direct pathway and
CH3;OO0H intermediate pathway in Fe/MOR. Red, yellow, purple, grey blue, grey and white

balls represent O, Si, Al, Fe, C and H atoms, respectively.
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Figure S11. Catalyst regeneration process for direct CH;OH formation pathway.
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Figure S12. Catalyst regeneration process for CH3;OH formation via CH300H intermediate

pathway.
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Figure S13. Catalyst regeneration process for HCHO formation pathway.

| Hcoon ;"‘\
_4 | desorption “ ¥
¢ Rovedl
5] T

— &
> 1 5N/ -
3 ] Vaiia
a H202 !‘,7 . '1
a; .74 adsorption H20 L‘&“
o e f ti
o | o \\ ormation
o -8 IE { H20
= VIS desorption >
= 1 o \
3 9 S 1z !
o P
2 Rtves
10 4 Faa 7 He0
- A [ HeO: desorption
1 ) !‘m)?r‘ adsorption
] H20
formation
-12

Reaction Coordinate

Figure S14. Catalyst regeneration process for HCOOH formation pathway.
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Figure S15. Structures of transition states for each elementary reaction step in CH3;OH

TS7 TS8

formation, HCOOH formation, and HCHO formation.
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Figure S16. Energy profile for H transfer from bridge OH to one bare O and CH,

dissociation.
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Figure S17. Calculated structures in H transfer from bridge OH to one bare O and subsequent

CH, dissociation.

Table S1. R-space fitting and coordination parameters obtained from EXAFS analysis.

Sample N (Fe-Fe)? N (Fe-O)? R(Fe-Fe)°/ A  R(Fe-0)°/ A
v-Fe,03 135 5.25 3.345 1.920
0.5% Fe-MOR-air 1.15540.368 5.758+1.748 3.32840.021 1.91040.025

& Coordination number; b Coordination distance.
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